摘要
发现于20世纪60年代的铝基非晶合金作为一种低密度材料拥有着较高的比强度,而且与传统晶态材料相比,呈现出长程无序、短程有序的原子排列特点,其内部不存在晶界、位错等较易引发失效的缺陷结构,表现出高硬度和优异的防腐、耐磨等性能,受到了国内外众多学者的广泛关注。起初,这类材料由于受到制备工艺的限制,表现为非晶与纳米晶共存的结构。随着科技发展,科学家们开发了一系列具有完全非晶结构的铝基合金体系。这些材料在具有较高的机械强度的同时能够表现出良好的韧性,使人们对其非晶形成能力、制备方法及应用推广等方面产生了较大的兴趣。对铝基非晶合金非晶形成能力的研究,学者们通常基于块体非晶合金非晶形成能力的经验判据,以及其他一些新提出的判定方法,如蒸发焓、费米层电子态密度、原子扩散以及析出相熔点等。但是,由于铝基非晶合金过冷液相区间较窄以及Al元素化学活性较强,因此铝基非晶合金的非晶形成能力普遍较弱。虽然人们在元素种类及含量变化对铝基非晶合金非晶形成能力的影响等方面做了大量的研究工作,但是目前仍未形成具有普适性的或更加精确的铝基非晶形成能力判定方法,未来仍需借助高性能材料模拟计算和机器学习等技术来进行完善。铝基非晶合金非晶形成能力较弱,以及其对外界条件的影响较为敏感,导致其在制备过程中易发生晶化,从而使获得的材料尺寸维度普遍较低。目前,铝基非晶合金的常见制备方法可按照其形态(粉状、块体、涂层等)来进行划分。粉状铝基非晶合金的制备方法主要为气雾化法和机械合金化法;块体铝基非晶合金的制备方法主要为直接凝固法和粉末冶金法;涂层类铝基非晶合金的制备方法主要包括激光熔覆、爆炸喷涂、冷喷涂、超音速火焰喷涂和电弧喷涂。相对�
The aluminum-based amorphous alloy that emerged in the 1960 s has a high specific strength as a low-density material.Compared with tradi-tional crystalline materials,it exhibits long-range disordered and short-range ordered atomic arrangement characteristics.There are no defect structures such as grain boundaries and dislocations that are more likely to cause failure,and it shows high hardness and excellent corrosion resistance and wear resistance.It has attracted widespread attention from many scholars at home and abroad.At first,due to the limitation of the preparation process,this type of material showed a structure in which amorphous and nanocrystalline phases coexist.With the development of science and technology,scientists have developed a series of aluminum-based alloy systems with completely amorphous structure.These materials have high mechanical strength and can show good toughness,which has caused great interest in the amorphous forming ability,preparation methods and application promotion.The research on the amorphous forming ability of aluminum-based amorphous alloys is usually based on the empirical criterion of the amorphous forming ability of bulk amorphous alloys,as well as some other newly proposed judgment methods,such as enthalpy of evaporation,density of Fermi layer electronic states,diffusion and melting point of precipitated phase.However,due to the narrow-supercooled liquid phase range of aluminum-based amorphous alloys and the strong chemical activity of Al element,the amorphous forming ability of aluminum-based amorphous alloys is generally weak.Although a lot of research work has been done on the influence of element types and content changes on the amorphous forming ability of aluminum-based amorphous alloys,there is no universal or more accurate method for determining the ability of aluminum-based amorphous formation In the future,we still need to use high-performance material simulation computing and machine learning to improve.Aluminum-based amorphous alloys have weak amorphous form
作者
梁秀兵
周志丹
张志彬
程江波
陈永雄
LIANG Xiubing;ZHOU Zhidan;ZHANG Zhibin;CHENG Jiangbo;CHEN Yongxiong(National Innovation Institute of Defense Technology,Academy of Military Sciences of PLA,Beijing 100071,China;School of Chemical Engineering&Technology,China University of Mining and Technology,Xuzhou 221116,China;College of Mechanics and Materials,Hohai University,Nanjing 211100,China)
出处
《材料导报》
EI
CAS
CSCD
北大核心
2021年第1期3-10,共8页
Materials Reports
基金
国家重点研发计划项目(2018YFC1902400)
国家自然科学基金(51975582)。
关键词
铝基非晶合金
非晶形成能力
热喷涂
涂层
再制造
Al-based amorphous alloy
glass forming ability
thermal spraying
coating
remanufacturing