期刊文献+

基于双层低秩分解的图像超分辨率重建算法

Image Super-resolution Reconstruction Algorithm based on Double-layered Low Rank Decomposition
原文传递
导出
摘要 针对超分辨率重建算法效率低以及对高频信息重建力度不足等问题,采用低秩分解方法,将图像分解后单独重建,并在此基础上加入图像的残差信息对重建图像进行高频增强,从而提出了一种新的双层重建算法.实验结果表明,算法在性能和效率方面均有大幅度提升. In view of the low efficiency and insufficient ability to reconstruct high frequency information of super resolution reconstruction approaches,a low rank decomposition algorithm is used to decompose the image and reconstruct each part separately in this paper.On this basis,a novel double-layered reconstruction scheme is proposed,adding the residual information of the image to enhance the reconstructed image.The experimental results show that the performance and efficiency of the proposed approach are greatly improved.
作者 高冉 王赟 GAO Ran;WANG Yun(College of Science,Zhongyuan University of Technology,Zhengzhou 450007,China)
出处 《数学的实践与认识》 北大核心 2020年第23期129-140,共12页 Mathematics in Practice and Theory
基金 国家自然科学基金(11601542,11801133) 河南省科技攻关项目(182102210524) 河南省教育厅重点研究项目(17A110036)。
关键词 超分辨率重建 低秩分解 残差信息 双层 高频增强 super resolution reconstruction low rank decomposition double-layered residual information high frequency enhancement
  • 相关文献

参考文献6

二级参考文献27

  • 1Tian Y, Yap K. Joint image registration and super-resolution from low resolution images with zooming motion[J].IEEE Trans on Circuits and Systems for Video Technology, 2013, 23(7) : 1224-1234. 被引量:1
  • 2Yang Min-Chun, Wang Yu-Chiang Frank. A self-learning approach to single image super resolution [J]. IEEE Trans on Multimedia, 2013, 15(3): 498-508. 被引量:1
  • 3Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Trans on Image Processing, 2006, 15(12) : 3736-3745. 被引量:1
  • 4Tsai R Y, Huang T S. Muhiframe image restoration and registration [J]. Advances in Computer Vision and Image Processing, 1984, 1:317-339. 被引量:1
  • 5Chang Hong, Yeung Dit-Yan, Xiong Yimin. Super- resolution through neighbor embedding [C] //Proc of the 17th IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2004:275-282. 被引量:1
  • 6Ni K S, Kumar S, Vasconcelos N, et aL Single image super- resolution based on support vector regression [C] //Proc of the 31st IEEE Int Con{ on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2006:601-604. 被引量:1
  • 7Freeman W T, Pasztor E C, Carmichael O T. Example- based super-resolution [J]. IEEE Computer Graphics and Application,2002, 22(2): 56-65. 被引量:1
  • 8Yang J, Wang Z. Coupled dictionary training for image super-resolution [J]. IEEE Trans on Image Processing, 2012, 21(8): 3467-3475. 被引量:1
  • 9Yang 3, Lin Z, Cohen S. Fast image suDer-resolution based on in-place example regression [C] //Proe of the 26th IEEE Conf on Computer Vision and Pattern Recognition. Piseataway, N]: IEEE, 2013: 1059-1064. 被引量:1
  • 10Glasner D, Bagon S, Irani M. Super-resolution from a single image [C] //Proc of the 12th IEEE Int Con{ on Computer Vision. Piscataway, NJ: IEEE, 2009:349-356. 被引量:1

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部