期刊文献+

基于集合经验模态分解和奇异谱分析的曲线光顺算法 被引量:7

Curve fairing algorithm based on ensemble empirical mode decomposition and singular spectrum analysis
下载PDF
导出
摘要 针对曲线光顺问题,提出了集合经验模态分解、游程检测法重构以及奇异谱分析降噪三者相结合的一种曲线光顺算法。算法首先将空间离散数字曲线上的x,y,z三个变量视为3个一维数字信号;然后对每个变量的数字信号序列分别进行集合经验模态分解;进而分别对每个变量分解后的所有分量使用游程检测法,将其重构为高频、低频分量;随后通过使用奇异谱分析对重构后的高频分量进行降噪;最终将降噪后的高频分量与低频分量重构,得到光顺后的曲线。通过试验表明,所提算法的光顺效果优于EMD法和曲率法,所提算法、EMD法和曲率法的平均曲率分别为0.0893,0.0919,0.1112。 Aiming at the curve smoothing,a curve smoothing algorithm based on empirical mode decomposition,run test refactoring and singular spectrum analysis noise reduction was proposed.Three variables x,y and z on the spatial discrete digital curve were regarded as three one-dimensional digital signals.Ensemble Empirical Mode Decomposition(EEMD)decomposition was carried out for each variable s digital signal sequence.Then,the runs test method was used to reconstruct all components of each variable into low-frequency components and high-frequency components.Singular Spectrum Analysis(SSA)was used to reduce the noise of the reconstructed high frequency components.The high frequency and low frequency components after noise reduction were reconstructed to obtain the curve after smoothing.Experiments showed that the smoothing effect of this algorithm was better than that of Empirical Mode Decomposition(EMD)method and curvature method.The average curvature of the proposed algorithm,EMD method and curvature method were 0.0893,0.0919 and 0.1112 respectively.
作者 吴易泽 张旭 WU Yize;ZHANG Xu(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2020年第12期3258-3267,共10页 Computer Integrated Manufacturing Systems
关键词 集合经验模态分解 游程检测法 奇异谱分析 曲线光顺算法 ensemble empirical mode decomposition runs test method singular spectrum analysis curve fairness algorithm
  • 相关文献

参考文献16

二级参考文献157

共引文献294

同被引文献85

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部