期刊文献+

基于分类模板数据库的电气铭牌识别 被引量:4

Electrical equipment nameplate recognition based on classification template database
下载PDF
导出
摘要 电气铭牌文本行多,识别难度较大,当前技术均难以实现有效准确的识别。为解决这一问题,提出一种基于分类模板数据库的方法辅助电气铭牌识别。根据电气铭牌文本行分布情况,将识别分为不可变区域和可变区域识别。每类铭牌不可变区域相当于一张图像,所以将文字识别转化为图像分类问题。通过对不可变区域建立分类模板数据库,引进卷积神经网络对电气铭牌图像进行分类。经实验验证,该方法能准确高效地识别电气铭牌的不可变区域,从而大幅提升了电气铭牌识别的准确度。 There are many lines of items in text on the electrical equipment nameplate(EEN),so it is difficult to identify them effectively and accurately by the current technologies.To solve this problem,a method based on the classification template database is proposed to assist the EEN recognition.The EEN recognition is divided into invariable area and variable area according to the distribution of text lines on EEN.The invariable area of each type of nameplates is equivalent to an image,so that the character recognition is transformed into the image classification.By establishing the classification template database for the invariable area,the convolutional neural network is introduced to classify the EEN images.The results of experiment verification show this method can recognize the invariable areas of EEN efficiently and accurately,thus greatly improving the accuracy of EEN identification.
作者 胡洋 石煌雄 蒋作 潘文林 HU Yang;SHI Huangxiong;JIANG Zuo;PAN Wenlin(School of Electrical Information Engineering,Yunnan Minzu University,Kunming 650500,China)
出处 《现代电子技术》 2021年第2期96-100,共5页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61761048)。
关键词 电气铭牌识别 分类模板数据库 文本行 文字识别 辅助识别 图像分类 EEN identification classification template database text line character recognition auxiliary recognition image classification
  • 相关文献

参考文献10

二级参考文献41

  • 1蒋外文,熊东平,张肖霞.基于多维数据库的MOLAP存储及查询技术研究[J].计算机工程与应用,2005,41(24):166-168. 被引量:7
  • 2崔豫平,姚兆民.变电设备智能巡检系统的开发与应用[J].山西电力,2006(B10):35-36. 被引量:8
  • 3邰彬.智能巡检系统在变电设备巡视中的应用[J].广东输电与变电技术,2008(1):21-22. 被引量:12
  • 4WANG Dahan,LIU Chenglin.Learning confidence transformation for handwritten chinese text recognition[J].International journal on document analysis and recognition,2014,17(3):205-219. 被引量:1
  • 5PAL Arpan,CHATTOPADHYAY Tanushyam,SINHA Aniruddha.Context-aware television-internet mash-ups using logo detection and character recognition[J].Pattern analysis and applications,2015,18(1):191-205.13. 被引量:1
  • 6CHIANG Yaoyi,CRAIG A.Recognizing text in raster maps[J].Geo Informatica,2015,19(1):1-27. 被引量:1
  • 7NAMANE A,GUESSOUM A,SOUBARI E H.CSM neural network for degraded printed character optical recognition[J].Journal of visual communication and image representation,2014,25(5):120-127. 被引量:1
  • 8CHANG J K,RYOO Seungteak,LIM Heuiseok.Real-time vehicle tracking mechanism with license plate recognition from road images[J].The journal of supercomputing,2013,65(1):353-364. 被引量:1
  • 9RYU Sangjin,KIM In-Jung.Discrimination of similar characters using nonlinear normalization based on regional importance measure[J].International journal on document analysis and recognition,2014,17(1):79-89. 被引量:1
  • 10ELAGOUNI Khaoula,GARCIA Christophe,MAMALET Franck.Text recognition in multimedia documents:a study of two neural-based OCRs using and avoiding character segmentation[J].International journal on document analysis and recognition,2014,17(1):19-31. 被引量:1

共引文献63

同被引文献25

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部