期刊文献+

Creep damage properties of sandstone under dry-wet cycles 被引量:5

下载PDF
导出
摘要 Rock creep properties can be used to predict the long-term stability in rock engineering.In reservoir bank slopes,sandstones which are frequently used in the bank slope undergoing longterm effects of dry-wet(DW) cycles due to periodic water inundation and drainage may gradually accumulate creep deformation,resulting in rock structure’s damage or even geological hazards such as landslides.To fully investigate the effect of DW cycles on the creep damage properties of sandstone,triaxial creep tests were conducted on saturated sandstone with different DW cycles by using a triaxial rheometer apparatus.The experimental results show that both the instantaneous strain and the stabilized strain increase with the DW cycles.In addition,using the Burgers model,four kinds of functions including an exponentially decreasing function,a linearly decreasing function,a linearly increasing function and an exponentially increasing function were proposed to express the relationships between the shear modulus,viscoelastic parameters of the Burgers model and the deviatoric stress under different DW cycles.Through comparative analysis,it is found that the theoretical curves generated using proposed four kinds of functions are in good agreement with the experimental data.Furthermore,macromorphological and microstructural observations were performed on specimens after various triaxial rheological tests.For samples with small number of DW cycles,approximately X-shaped fracture surfaces were observed in shear failure zones,whereas several shear fractures including obvious axial and horizontal tensile cracks,and flaws were found for samples with relatively large DW cycles due to long-term propagation and evolution of micro-fissures and micro-pores.Furthermore,as the DW cycles increases,the variation in micro-structure of samples after creep failure was summarized into three stages,namely,a stage with good and dense structure,a stage with pore and fissure propagation,and a stage with extensive increase of pores,fissures and loose particles.I
出处 《Journal of Mountain Science》 SCIE CSCD 2020年第12期3112-3122,共11页 山地科学学报(英文)
基金 supported by the National Natural Science Foundation of China (No. 41902268) the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety (No. 2019ZDK030) the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (No. SKLGP2020K016) the China Postdoctoral Science Foundation (No. 2019T120871)。
  • 相关文献

参考文献1

共引文献3

同被引文献40

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部