期刊文献+

基于BP-PSO算法的锂电池低温充电策略优化 被引量:3

Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm
下载PDF
导出
摘要 为了提高低温下锂离子电池的充电性能,降低其低温充电老化速率和充电时间,从而促进新能源汽车在低温地区的推广,进行了一系列锂离子电池低温充放电循环老化试验,基于大量低温充放电试验数据,分析了低温环境下不同充电条件对锂离子电池老化速率的影响。建立了用于锂离子电池低温充电老化速率估计的BP神经网络模型。在此基础上引入粒子群优化算法对传统CC-CV充电策略进行优化,将整个充电过程分为两个阶段,第一阶段,在达到充电截至电压前,采用粒子群优化算法寻找近似最优充电曲线,第二阶段采用常规的恒压充电。以低温容量衰退速率估计模型为基础,将低温充电老化速率和充电时间加权求和得到的多目标优化方程作为粒子群优化算法的适应度函数,在适应度函数中引入权值系数"g"来权衡两个优化目标的数量级,用粒子群优化算法进行迭代优化。测试结果表明所建立的低温充电老化模型对锂电池低温充电容量衰退速率具有较高的估计精度,优化后的充电策略能有效减小锂电池低温充电老化速率和充电时间。 In order to improve the low temperature charge performance of lithium-ion battery,reduce the aging rate and charging time in low temperature,thereby promoting the promotion of new energy vehicles in the low temperature region,made a series of lithium-ion battery charge and discharge cycle aging test in low temperature,based on a large number of low temperature test,charge and discharge test data under low temperature environment is analyzed under different charge conditions on the influence of lithium-ion battery aging rate.A BP neural network model for low temperature charge aging rate estimation of lithium-ion batteries was established.On this basis,particle swarm optimization algorithm is introduced to optimize the traditional CC-CV charging strategy,and the whole charging process is divided into two stages.In the first stage,particle swarm optimization algorithm is used to find the approximate optimal charging curve before reaching the charging cut-off voltage,and in the second stage,conventional constant voltage charging is used.Based on the capacity decline rate estimation model at low temperature,low temperature aging rate charging and charging time weighted summation of multi-objective optimization equation as the fitness function of particle swarm optimization algorithm,introduction of the weights coefficient"g"in the fitness function to weigh the two optimization goal,iterative optimization using particle swarm optimization algorithm.The results show that the model has high estimation accuracy for the decline rate of low temperature charging capacity,and the optimized charging strategy can effectively reduce the low temperature charging aging rate and charging time of lithium batteries.
作者 王泰华 张书杰 陈金干 WANG Taihua;ZHANG Shujie;CHEN Jin'gan(Henan Polytechnic University,Jiaozuo 454000,Henan,China;Shanghai Tongzhan New Energy Co.,Ltd.,Shanghai 201804,China)
出处 《储能科学与技术》 CAS CSCD 2020年第6期1940-1947,共8页 Energy Storage Science and Technology
关键词 锂离子电池 BP神经网络 粒子群优化算法 低温充电 电池老化 充电策略 lithium ion batteries BP neural network particle swarm optimization algorithm low temperature charge battery aging the charging strategy
  • 相关文献

参考文献4

二级参考文献24

  • 1Liao X Z, Ma Z F, Gong Q, et al. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonated-based electrolyte [J]. Electrochemistry Communications, 2008,10(5) :691-694. 被引量:1
  • 2Choi S H, Son J W, Yoon Y S, et al. Particle size effects on temperature-dependent performance of LiCoO2 in lithium batteries[J]. J Power Sources,2006, 158(2): 1419-1424. 被引量:1
  • 3Smart M C,Ratnakumar B V,Whitcanack L D, et al. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes[J]. J Power Sources, 2003,119-121:349-358. 被引量:1
  • 4Zhang S S, Xu K, Jow T R. The low temperature performance of Li-ion batteries[J]. J Power Sources, 2003,115(1) : 137-140. 被引量:1
  • 5Smart M C, Ratnakumar B V, Surampudis S. Use of organic esters as cosolvents in electrolytes for lithiumion batteries with improved low temperature performance[J]. J Electrochem Soc, 2002, 149 (4) : A361-A370. 被引量:1
  • 6ZHANG S S, XU K, JOW T R. Charge and discharge characteristics of a commercial LiCoO ( 2 ) -based 18650 Li- ion battery[ J ]. Journal of Power Sources, 2006,160 (2) :1403 - 1409. 被引量:1
  • 7ELBULUK M E, HAMMOUD A, GERBER S, et al. Low temperature performance evaluation of battery management technologies, Vancouver, BC, Canada, 1999 [ C ]. SAE International, 1999. 被引量:1
  • 8TIPPMANN S, WALPER D, BALBOA L, et al. Low- temperature charging of lithium-ion cells part I: Electro- chemical modeling and experimental investigation of degra- dation behavior[ J]. Journal of Power Sources, 2014,252 : 305 - 316. 被引量:1
  • 9易昌华,任文静,王钗.二次水声定位系统误差分析[J].石油地球物理勘探,2009,44(2):136-139. 被引量:23
  • 10王洪伟,杜春雨,王常波.锂离子电池的低温性能研究[J].电池,2009,39(4):208-210. 被引量:36

共引文献58

同被引文献30

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部