期刊文献+

面向对象最优分割尺度下的茶园提取 被引量:9

Tea Plantation Extraction under Object-OrientedOptimal Segmentation Scale
下载PDF
导出
摘要 针对现有的高分辨率遥感影像面向对象分类确定最优分割尺度研究中,大多仅考虑了对象光谱特征而忽略了对象空间特征的局限性,采用RMNE(the ratio of mean difference to neighbors(Abs)to entropy)方法,以高分二号(GF-2)影像为数据源,利用影像纹理信息熵作为对象内部同质性指标,对象光谱均值与邻域光谱均值差分绝对值作为对象之间异质性指标,并结合目视确定茶园最优分割尺度为170,进而利用面向对象分类方法实现了茶园提取。结果表明,基于RMNE方法确定最优分割尺度获取的分割结果,较为符合真实的茶园对象边界,并且该分割尺度下的茶园提取生产者精度达到96.76%,用户精度达到83.60%。 Aiming at the existing research on determining the optimal segmentation scale for object-oriented classification of high-resolution remote sensing images,most of which only considers the spectral characteristics of the object and ignores the limitations of the spatial characteristics of the object,this paper uses RMNE(the ratio of mean difference to neighbors(Abs)to entropy)method,using the Gaofen-2(GF-2)image as the data source,using the image texture information entropy as the internal homogeneity index of the object,and the absolute value of the object spectral mean and the absolute value of the neighborhood spectral mean difference between the objects.Qualitative indicators,combined with visual observation,determine the optimal segmentation scale of tea plantations as 170,and then use object-oriented classification method to achieve tea plantation extraction.The results show that the segmentation results obtained based on the RMNE method to determine the optimal segmentation scale are more in line with the real tea plantation object boundaries,and the tea plantation extraction accuracy under this segmentation scale reaches 96.76%and the user accuracy reaches 83.60%.
作者 陈慧 江洪 蒋世豪 CHEN Hui;JIANG Hong;JIANG Shihao(Key Laboratory of Spatial Data Mining&Information Sharing of Ministry of Education,Fuzhou University,Fuzhou,350108,China;National and Local Joint Engineering Research Center of Satellite Spatial Information Technology,Fuzhou 350108,China;Digital China Research Institute(Fujian),Fuzhou 350108,China)
出处 《测绘与空间地理信息》 2020年第12期17-20,共4页 Geomatics & Spatial Information Technology
基金 国家重点研发计划课题(2017YFB0504203) 福建省自然科学基金项目(2017J01658)资助。
关键词 面向对象 RMNE 最优分割尺度 茶园 object-oriented RMNE optimal segmentation scale tea plantations
  • 相关文献

参考文献8

二级参考文献48

  • 1黄慧萍,吴炳方.地物大小、对象尺度、影像分辨率的关系分析[J].遥感技术与应用,2006,21(3):243-248. 被引量:31
  • 2陈建裕,潘德炉,毛志华.高分辨率海岸带遥感影像中简单地物的最优分割问题[J].中国科学(D辑),2006,36(11):1044-1051. 被引量:17
  • 3李红军,郑力,雷玉平,李春强,周戡.基于EOS/MODIS数据的NDVI与EVI比较研究[J].地理科学进展,2007,26(1):26-32. 被引量:126
  • 4Uuemaa E, Rosaare J, Mander U. Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments [ J ]. EcoLogical Indicators, 2005 ( 5 ) : 350 - 369. 被引量:1
  • 5Blaschke,T. , Hay,G. J. Object - oriented image analysis and scale - space: theory and methods for modeling and evaluating multi - scale landscape structure [ J ]. In - ter- national Archives of Photogrammetry and Remote Sensing, 2007(34) : 22-29. 被引量:1
  • 6Benz, U. C. , P. Hofmann, et al. Multi - resolution object - oriented fizzy analysis of remote sensing data for GIS - ready information [ J ]. ISPRS Journal of Photogrammetry and l/emote Sensing, 2004,58 ( 3 - 4 ) 239 -258. 被引量:1
  • 7WondcocK C E, Strahler A H. The factor of scale in re- mote sensing [ J]. Remote Sensing of Environment, 1987, 21(3) : 311 -332. 被引量:1
  • 8张俊,汪云甲,李妍,等.一种面向x寸象的高分辨率影像最优分割尺度选择算法[J].科学导报,2009,27(21):91-94. 被引量:1
  • 9刘兆祚,李鑫慧,沈润平,等.高分辨率遥感图像分割的最优尺度选择[J].计算机工程与应用(网络版),2012-11-12. 被引量:1
  • 10郭建聪,李培军,肖晓柏.一种高分辨率多光谱图像的多尺度分割方法[J].北京大学学报:自然科学版,网络版(预印本),2008(3):123-125. 被引量:3

共引文献119

同被引文献83

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部