期刊文献+

预测PICC导管相关血流感染风险的列线图模型的建立与验证 被引量:18

Establishment and validation of nomogram model for prediction of peripherally inserted central venous catheter-related bloodstream infection risk
下载PDF
导出
摘要 目的探讨经外周静脉穿刺的中心静脉导管(PICC)患者发生PICC相关血流感染(PBSI)的危险因素,并建立与验证预测PBSI发生风险的列线图模型。方法选取2016年1月—2020年1月于海南医学院第二附属医院接受PICC的931例患者作为研究对象。根据患者是否发生PBSI分为PBSI组(63例)和无PBSI组(868例),比较两组的临床特征。采用多因素logistic回归分析筛选PBSI的独立危险因素;根据回归分析结果建立列线图预测模型;采用校准曲线及受试者工作特征曲线(ROC)评价模型预测效能。结果多因素logistic回归分析示,糖尿病、恶性肿瘤、血液病、肠外营养、双腔、附加装置、曾住重症监护病房及留管时间是PICC患者发生PBSI的独立危险因素(P<0.05)。列线图模型内部验证的C-index为0.929;校准曲线示列线图模型预测PBSI发生风险与实际PBSI发生风险平均绝对误差为0.017;ROC曲线示列线图模型预测PBSI的曲线下面积为0.930。结论本研究建立的预测PICC患者PBSI风险的列连图模型具有良好的区分度、准确度,临床价值较高。 Objective To discuss the risk factors of peripherally inserted central catheter(PICC)related bloodstream infection(PBSI)in patients with PICC,and to establish and validate a nomogram model for predicting the risk of PBSI.Methods A total of 931 patients receiving PICC in the Second Affiliated Hospital of Hainan Medical University from January 2016 to January 2020 were selected as research objects.The patients were divided into PBSI group(63 cases)and non-PBSI group(868 cases)according to whether there was PBSI or not,and clinical characteristics were compared.Multiplicity logistic regression analysis was used to screen independent risk factors of PBSI.According to the results of regression analysis,the nomogram prediction model was established.Calibration curve and receiver operating characteristic curve(ROC)were used to evaluate the predictive effectiveness of the model.Results Multiplicity logistic regression analysis showed that diabetes mellitus,malignant tumor,hematopathy,parenteral nutrition,double lumen,additional devices,ICU stay,and the time of indwelling catheter were independent risk factors for PBSI in PICC patients(P<0.05).The C-index of internal validation of nomogram model was 0.929.The average absolute error between the predicted risk of PBSI and the actual risk was 0.017.The area under the curve predicted by ROC curve nomogram model was 0.930.Conclusion The nomogram model established in this study for predicting the risk of PBSI in patients with PICC has good discrimination and accuracy,and has high clinical value.
作者 唐倩芸 邢柏 TANG Qianyun;XING Bo(Department of ICU,the Second Affiliated Hospital of Hainan Medical University,Hainan Province,Haikou 570311,China)
出处 《中国医药导报》 CAS 2020年第36期45-48,共4页 China Medical Herald
基金 海南省自然科学基金资助项目(819MS128)。
关键词 经外周静脉穿刺的中心静脉导管 血流感染 列线图 模型 Peripherally inserted venous central catheter Bloodstream infection Nomogram Model
  • 相关文献

参考文献26

二级参考文献290

共引文献378

同被引文献210

引证文献18

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部