期刊文献+

融合运动信息的图像运动模糊去除算法 被引量:5

Image motion deblur algorithm based on motion information
下载PDF
导出
摘要 现有运动去模糊算法难以有效复原含有大尺度旋转的复合运动模糊,针对此问题提出了一种基于U-net模型的神经网络框架。该框架通过融合运动信息至网络输入,给定每一像素点不同的运动约束。经过网络的编码器与解码器结构,得到每一像素点的预测值,实现端对端的方式直接获得复原图像。实验在通用数据集上与当前先进去模糊算法进行比较,该方法相比性能最好的算法PSNR(peak signal-to-noise ratio)值提高了0.14 dB,相比实时性最好的算法运行时间减少了0.1 s;同时在含有旋转运动的测试集上进行验证,证明了该算法可获得较好的复原质量。 The existing motion deblurring algorithm is difficult to effectively recover the composite motion blur with large rotational motion.This paper proposed a neural network framework based on U-net model for this problem.By combining motion information to the input of network,this framework gave different motion constraint to each pixel.Through the structure of encoder and decoder,each pixel obtained the prediction value,thereby the blurry image could be recovered in an end-to-end manner.The experiment was compared with the current state-of-art deblurring algorithm on the universal data set.This method improved the PSNR value of the best algorithm by 0.14 dB,and reduced the running time of the best real-time algorithm by 0.1 s.At the same time,it was verified on the test dataset with rotational motion.This proves that the algorithm obtains better restoration quality.
作者 董星煜 刘传奇 赵健康 Dong Xingyu;Liu Chuanqi;Zhao Jiankang(School of Electronic Information&Electrical Engineering,Shanghai Jiao Tong University,Shanghai 201100,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第1期278-281,共4页 Application Research of Computers
基金 国家重点研发计划项目(2016YFC0200400) 国家自然科学基金资助项目(61673265)。
关键词 运动模糊 图像复原 卷积神经网络 运动约束 motion blur image restoration convolutional neural network motion constraint
  • 相关文献

参考文献3

二级参考文献15

  • 1Helstrom C W. Image restoration by the method of least squares [ J ]. Journal of the Optical Society of America ( JO- SA), 1967,57 ( 3 ) : 297 - 303. 被引量:1
  • 2Richardson W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America ( JOSA), 1972,62 ( 1 ) : 55 - 59. 被引量:1
  • 3Yuan L, Sun J, Quan, L, et al. Progressive inter-scale and intra-scale non-blind image deconvolution[J]. ACM Trans- actions on Graphics ( TOG), 2008,27 ( 3 ) : 74 - 83. 被引量:1
  • 4Krishnan D, Tay T, Fergus R. Blind deconvolution using a normalized sparsity measure [ A ]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Pro- ceedings [ C ]. Colorado : IEEE,2011:233 - 240. 被引量:1
  • 5Cao W F, Sun J,Xu Z B. Fast image deconvolution using closed-form thresholding formulas of Lq ( q = 1/2,2/3 ) regularization [ J ]. Journal of Visual Communication and Image Representation,2013,24 ( 1 ) :31 - 41. 被引量:1
  • 6Zuo W M, Meng D Y, Zhang L, et al. A generalized itera- ted shrinkage algorithm for non-convex sparse coding [ A ]. IEEE international conference on computer vision (ICCV) Proceedings [ C ]. Sydney: IEEE, 2013 : 217 - 224. 被引量:1
  • 7Gong P G, Zhang C S, Lu Z S, et al. A general iterative shrinkage and thresholding algorithm for non-convex regu- larized optimization problems [ EB/OL ]. http ://arxiv. org/ abs/1303. 4434,2013-03-01. 被引量:1
  • 8Cho S, Wang J, Lee S. Handling outliers in non-blind image deconvolution [ A ]. IEEE International Conference on Com- puter Vision (ICCV) Proceedings [ C 1. Barcelona: IEEE, 2011:495 - 502. 被引量:1
  • 9Schmidt U, Rother C, Nowozin S, et al. Discriminative non- blind deblurring [ A ]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Proceedings [ C ]. Port- land:IEEE,2013:604 - 611. 被引量:1
  • 10Levin A, Weiss Y, Durand F, et al. Understanding and e- valuating blind deconvolution algorithms [ A ]. IEEE inter- national conference on computer vision (CVPR), Pro- ceedings [ C ]. Miami : IEEE , 2009 : 1964 - 1971. 被引量:1

共引文献13

同被引文献36

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部