期刊文献+

自适应VMD算法在滚动轴承故障诊断方面的应用 被引量:13

Application of Adaptive VMD Algorithm in Fault Diagnosis of Rolling Bearing
下载PDF
导出
摘要 针对滚动轴承的故障特征信息一般较为微弱且难以提取的问题,提出了自适应VMD故障特征提取方法。将最大峭度指标和最小包络熵组合成复合指标,并结合粒子群优化算法对VMD参数进行优化;应用优化参数后的VMD算法对待测信号进行分解,根据最大峭度指标选取最佳模态分量;对最佳模态分量进行Hilbert算法的包络解调处理,从包络谱中提取出故障特征信息。仿真和实验结果验证了该方法在滚动轴承故障诊断方面的可行性。 Aiming at the problem that the fault feature information of rolling bearing is weak and difficult to extract,an adaptive VMD fault feature extraction method was proposed.The maximum kurtosis index and the minimum envelope entropy were combined into the composite index,and the VMD parameters were optimized by the particle swarm optimization algorithm.The VMD algorithm after optimizing parameters was used to decompose the measured signal,and the optimal modal component was selected according to the maximum kurtosis index.The optimal modal component was demodulated by Hilbert algorithm to extract fault feature information from the envelope spectrum.Simulation and experimental results show that the method is feasible in fault diagnosis of rolling bearing.
作者 王杰 郭世伟 Wang Jie;Guo Shiwei(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《机电工程技术》 2020年第11期161-164,共4页 Mechanical & Electrical Engineering Technology
基金 国家自然科学基金项目(编号:51875481)。
关键词 滚动轴承 故障诊断 变分模态分解 粒子群优化算法 rolling bearing fault diagnosis variational modal decomposition particle swarm optimization algorithm
  • 相关文献

参考文献8

二级参考文献36

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2李肖博,肖仕武,刘万顺,郑涛.基于形态滤波的变压器电流相关保护方案[J].中国电机工程学报,2006,26(6):8-13. 被引量:23
  • 3李辉,郑海起,唐力伟.声测法和经验模态分解在轴承故障诊断中的应用[J].中国电机工程学报,2006,26(15):124-128. 被引量:26
  • 4Zhou F,Yan B,Demodulated resonance technique in faultdiagnosis of high speed line rolling-mill synchromesh gears[C].//Imaging Systems and Techniques(IST),IEEE International Conference on,IEEE,2012:344-349. 被引量:1
  • 5Raj S,Murali N.Early classification of bearing faults usingmorphological operators and fuzzy inference[J].IEEE Transactions on Industrial Electronics,2013,60(2):567-574. 被引量:1
  • 6Dong Y,Liao M,Zhang X,et ai.Faults diagnosis of rollingelement bearings based on modified morphological method[J].Mechanical Systems and Signal Processing,2011,25(4):1276-1286. 被引量:1
  • 7Wu Z H,Huang N E.Ensemble empirical modedecomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):I-41. 被引量:1
  • 8Harris M C,Blotter J D,Scott D.Sommerfeldt obtaining thecomplex pressure field at the hologram surface for use innear-field acoustical holography when pressure and in-planevelocities are measured[J].The Journal of the Acoustical Society of America,2006,119(2):808-816. 被引量:1
  • 9Zhang L,Xu J,Yang J,et al.Multiscale morphology analysis and its application to fault diagnosis[J].Mechanical Systems and Signal Prpcessing,2008,22(3):597-610. 被引量:1
  • 10Nikolaou N G,Antoniadis I A.Application of morphologicaloperators as envelope extractors for impulsive-type periodicsignals[J].Mechanical Systems and Signal Processing,2003,17(6):1147-1162. 被引量:1

共引文献438

同被引文献92

引证文献13

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部