期刊文献+

可变抽样区间的多变量自相关过程VAR控制图 被引量:2

Vector Auto-regression Control Chart for Monitoring Multivariate Autocorrelation Process with Variable Sampling Intervals
下载PDF
导出
摘要 基于批量-均值法的思想,向量自回归(VAR)控制图对多变量自相关过程的较小偏移可以进行有效控制。为了提高多变量自相关过程监控效率,本文研究可变抽样区间的VAR控制图。首先,对多变量自相关过程的VAR控制图进行可变抽样区间设计;然后,用蒙特卡洛模拟方法计算其平均报警时间;最后,以平均报警时间为评价准则,对所设计的可变抽样区间VAR控制图与固定抽样区间的VAR控制图进行比较研究。研究结果表明:所设计的可变抽样区间多变量自相关过程VAR控制图较固定抽样区间的多变量自相关过程VAR控制图能更好的监控过程的变化。 The vector auto-regression(VAR)control chart can effectively monitor the small shift of multivariate autocorrelation process based on the idea of the batch-mean mind.To improve the monitoring efficiency for multivariate autocorrelation process,VAR control chart with variable sampling intervals(VSI)is studied.Firstly,VAR control chart with variable sampling intervals for monitoring multivariate autocorrelation process is designed;Secondly,the average time to signal of this control chart is calculated using Monte Carlo simulation method;Finally,taking the average time to signal as the evaluation criterion,VAR control chart with variable sampling intervals and fixed sampling intervals are compared.The computing results show that the VSI VAR control chart is the more efficient indetecting shifts than the fixed sampling interval(FSI)VAR control chart.
作者 薛丽 XUE Li(College of Management and Economics, Tianjin University, Tianjin 300072, China;School of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2020年第12期1-7,共7页 Operations Research and Management Science
基金 国家自然科学基金项目(71701188,71871204) 中国博士后科学基金(2016M601266) 河南省高校科技创新人才计划(19HASTIT032) 河南省高校科技创新团队支持计划(21RTSTHN018) 河南省科技攻关计划(202102310638)。
关键词 可变抽样区间 多变量自相关过程 VAR控制图 平均报警时间 variable sampling intervals multivariate autocorrelation process (vector auto-regression)VAR control chart average time to signal
  • 相关文献

参考文献2

二级参考文献33

  • 1杨穆尔,孙静.二元自相关过程的残差T^2控制图[J].清华大学学报(自然科学版),2006,46(3):403-406. 被引量:11
  • 2Alwan L C and Radson D. Time-Series investigation of subsample mean charts[J]. IIE Transactions, 1992, 24: 66-80. 被引量:1
  • 3Montgomery D C and Mastrangelo C M. Some statistical process control methods for autocorrelated data[J]. Journal of Quality Technology, 1991, 23(3): 179-204. 被引量:1
  • 4Lowry C A and Montegomery D C. A Review of Multivariate Control Charts[J]. IIE Transactions, 1995. 27: 800-810. 被引量:1
  • 5Vasilopoulos A V and Stamboulis A P. Modification of control chart limits in the presence of data correlation[J]. Journal of Quality Technology, 1978, 10(1): 20-30. 被引量:1
  • 6Runger G. C and Willemain T R. Batch-means control charts for autocorrelated data[J]. IIE Transactions, 1996, 28(6): 483. 被引量:1
  • 7Runger G C. Multivariate statistical process control for autocorrelated processes[J]. International Journal of Production Research, 1996, 34(6): 1717-1724. 被引量:1
  • 8Pan X and Jarrett J. Applying state space to SPC: Monitoring multivariate time series[J]. Journal of Applied Statistics, 2004, 31(4): 397. 被引量:1
  • 9Theodossiou P T. Predicting shifts in the mean of multivariate time series process: an application in predicting business failures[J]. Journal of the American Statistical Association, 1993, 88(422): 441-447. 被引量:1
  • 10Kramer H G. and Schmid W. EWMA Charts for Multivariate Time Series[J]. Sequential Analysis, 1997, 16: 131-154. 被引量:1

共引文献6

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部