期刊文献+

Bi-LSTM+CRF的网络空间安全领域命名实体的识别 被引量:4

Named entities recognition of Bi-LSTM+CRF in cyberspace security domain
下载PDF
导出
摘要 为细粒度分析多维度组织网络空间中威胁情报,提出一种结合双向长短时记忆网络Bi-LSTM与线性链条件随机场CRF的实体识别模型。利用网络空间安全领域词典构建、词向量训练、序列标注以及模型训练方法建立了知识图谱,通过Bi-LSTM提取特征识别网络空间安全领域中12类命名实体。结果表明,该方法评价值优于其他算法,F值达到85.00%,整体识别性能较高。 This paper proposes an entity recognition model combining Bi-LSTM and CRF of linear chain to analyze the threat intelligence in multi-dimensional cyberspace with fine granularity.The study involves establishing the knowledge graph using domain dictionary construction,word vector training,sequence labeling and model training in the cyberspace security domain,and recognizing 12 types of named entity recognition in cyberspace security domain by Bi-LSTM feature extraction.The results show that this method boasts the evaluation value superior to other algorithms,with the F value of up to 85.00%,and thus a higher overall recognition performance.
作者 廉龙颖 Lian Longying(School of Computer & Information Engineering, Heilongjiang University of Science & Technology, Harbin 150022, China)
出处 《黑龙江科技大学学报》 CAS 2020年第6期717-722,共6页 Journal of Heilongjiang University of Science And Technology
基金 黑龙江省自然科学基金项目(F201436)。
关键词 知识图谱 网络空间安全 命名实体识别 Bi-LSTM CRF knowledge graph cyberspace security named entity recognition Bi-LSTM CRF
  • 相关文献

参考文献13

二级参考文献120

共引文献322

同被引文献32

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部