期刊文献+

大数据驱动的大学生由“浅”及“深”的阅读新模式浅析

Research on New Reading Mode of College Students from "Shallow" to "Deep" Driven by Big Data
下载PDF
导出
摘要 随着信息技术的不断发展,在大学生身上呈现的是"浅"与"深"相矛盾,阅读习惯与学业要求相对立。缺乏精准信息的推送,无法满足个性化学习需求,是大学生这一群体面对的突出问题。本文探索通过浅阅读来推动深阅读,通过大数据技术将大学生的浅阅读转化为深阅读,构建基于大数据的阅读内容精准推送平台。使学生与图书之间获得更为精准和有效的关联,能更好地辅助学习,推动大学生的阅读由"浅"及"深"。 With the development of information technology, there is a contradiction between "shallow reading" and "deep reading" in college students, and reading habits are opposite to academic requirements. Because lack of accurate information push and unable to meet the needs of personalized learning, college students face a prominent problem. This paper explores the promotion of deep reading through shallow reading, and the transformation of college students’ shallow reading into deep reading through big data technology. In addition, an accurate reading push platform is constructed based on big data. It enables students to get more accurate and effective association with books, which can better assist learning and promote college students’ reading from "shallow" to "deep".
作者 彭虎 PENG Hu(School of Information Science and Technology,Jiujiang University,Jiujiang,Jiangxi 332005)
出处 《科教导刊》 2020年第29期35-36,共2页 The Guide Of Science & Education
基金 江西省教育科学“十三五”规划课题(18YB240)。
关键词 大数据 浅阅读 深阅读 精准推送 big data shallow reading deep reading accurate delivery
  • 相关文献

参考文献5

二级参考文献23

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部