期刊文献+

人工智能病理诊断系统在肺癌诊断及预后判断中的应用综述 被引量:8

Role of artificial intelligence pathological diagnosis system in diagnosis and prognosis prediction of lung cancer
下载PDF
导出
摘要 肺癌是目前世界上发病率和死亡率最高的恶性肿瘤,严重危害人类健康。目前,肺癌的病理诊断主要依赖于人工病理切片分析,人工阅片效率低且具有一定的主观性,会导致一定的误诊和漏诊。近年来,随着人工智能和数字病理学的发展,人工智能在肺癌病理诊断中的巨大应用前景逐渐显现,人工智能可以在短时间内整合大量信息并进行分析,有效提高肺癌的诊断效率,在预测肺癌的突变基因方面也有相关研究报道,从而成为病理学专家的有力辅助诊断工具。本文主要针对人工智能病理诊断系统在肺癌的细胞病理诊断、组织病理诊断及突变基因预测中的应用进展进行综述。 Lung cancer is a malignant tumor with the highest morbidity and mortality in the world,which seriously endangers human health.At present,the pathological diagnosis of lung cancer mainly depends on the manual analysis of pathological slices,which is inefficient and subjective,resulting in a certain rate of misdiagnosis and missed diagnosis.In recent years,with the development of artificial intelligence and digital pathology,the promising application prospects of artificial intelligence in the pathological diagnosis of lung cancer emerge gradually.Artificial intelligence can integrate and analyze a large amount of information in a short time,which effectively improves the diagnosis efficiency of lung cancer,and there are also researches on predicting mutant genes of lung cancer,thus becoming a powerful auxiliary diagnostic tool for pathologists.This review mainly focuses on the application progress of artificial intelligence pathological diagnosis system in cytopathological diagnosis,histopathological diagnosis,and mutant gene prediction of lung cancer.
作者 王华南 崔节伟 王娟 梁志欣 WANG Hua'nan;CUI Jiewei;WANG Juan;LIANG Zhixin(Department of Respiratory Medicine,the First Medical Center,Chinese PLA General Hospital,Beijing 100853,China;Department of Respiratory Medicine,The 990th Hospital of Joint Logistics Support Force,Xinyang 464000,He'nan Province,China)
出处 《解放军医学院学报》 CAS 2020年第10期1029-1032,1036,共5页 Academic Journal of Chinese PLA Medical School
基金 北京市科技计划(Z171100001717078)。
关键词 人工智能 肺癌 数字病理 诊断 预后 基因突变 artificial intelligence lung cancer digital pathological diagnosis prognosis gene mutation
  • 相关文献

参考文献4

二级参考文献21

共引文献51

同被引文献49

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部