期刊文献+

基于三维星型阵列拓扑的自校准麦克风阵列声源定位系统 被引量:1

Sound source localization system of self-calibrating microphone array based on three-dimensional star array topology
下载PDF
导出
摘要 针对传统的随机区域收缩(SRC)的相位变换加权的可控响应功率(SRP-PHAT)算法只适用于大孔径麦克风阵列的近场声源定位,且未考虑阵列拓扑结构和阵列校准对定位性能的影响的问题,提出了三维阵列拓扑基于两阶段麦克风自校准方法的声源定位(SSL)系统。实测结果表明,当声源与阵列距离较近时,定位误差在10 cm左右,当声源与阵列距离达到6 m时,相比于传统SPR-PHAT方法,定位误差降低了48%,达到了室内声源定位的精度要求。 The traditional stochastic region contraction(SRC)phase-transformed weighted controllable response power(SRP-PHAT)algorithm is only suitable for localization of large-field microphone array near-field sound sources,and does not consider the array topology and array calibration for positioning performance problems.A three-dimensional array topology based sound source localization(SSL)system based on a two-stage microphone self-calibration method is proposed.The actual measurement results show that when the distance between the sound source and the array is close,the positioning error is about 10 cm.When the distance between the sound source and the array reaches 6 m,the positioning error is reduced by 48%compared to the traditional SPR-PHAT method,and the indoor sound is reached Source positioning accuracy requirements.
作者 王玫 孙昊彬 罗丽燕 宋浠瑜 WANG Mei;SUN Haobin;LUO Liyan;SONG Xiyu(Provincial Ministry of Education Key Laboratory of Cognitive Radio and Signal Processing,Guilin University of Electronic Technology,Guilin 541004,China;College of Information Science and Engineering,Guilin University of Technology,Guilin 541006,China)
出处 《桂林电子科技大学学报》 2020年第4期279-285,共7页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61771151) 广西自然科学基金(2019GXNSFBA245103) 广西无线宽带通信与信号处理重点实验室基金(GXKL06180109) 桂林电子科技大学研究生教育创新计划(2019YCX038) 桂林电子科技大学研究生优秀学位论文培育项目(16YJPYBS02)。
关键词 频率响应 麦克风阵列拓扑结构 声源定位 定位性能 frequency response microphone array topology sound source location location performance
  • 相关文献

参考文献5

二级参考文献21

  • 1王冬霞,殷福亮.联合波束形成与谱减法的麦克风阵列语音增强算法[J].大连理工大学学报,2006,46(1):121-126. 被引量:7
  • 2Omologo M, Svaizer P. Acoustic source location in noisy and reverberant environment using CSP analysis[ A]. IEEE Internationai Conference on Acoustics, Speech, and Signal Processing [ C ]. Adelaide, Australia: IEEE Signal Processing Society Press, 1996.921 - 924. 被引量:1
  • 3Brandstein S M. A Framework for Speech Source Localization Using Sensor Asrays[D]. USA: Brown University, 1995. 被引量:1
  • 4Fischer S, Simmer U K. Beamforming microphone army for speech acquisition in noisy environments[ J ]. Speech Communication, 1996,20(2) :215 - 227. 被引量:1
  • 5Doclo S,Moonen M. GSVD-based optimal filtering for single and multimicrophone speech enhancement [ J ]. IEEE Transactions on Signal Processing,2002,50(9 ):2230- 2244. 被引量:1
  • 6MCCOWAN A L,BOURLARD H. Microphone array post-filtering for diffuse noise field[ A]. IEEE International Conference on Acoustics, Speech, and Signal Processing[ C]. Florida, USA: IEEE Signal Processing Society Press,2002. I-905- I-908. 被引量:1
  • 7Wang Dongxia, Yin Fuliang. A subband adaptive learning algorithm for microphone array based speech enhancement [ A ]. Lecture Notes in Computer Science[ C ]. Berlin: Springer,2005. 592 - 597. 被引量:1
  • 8Johnson D,Dudgeon D. Array Signal Processing: Concepts and Techniques[ M ]. New Jersey: Prentice- Hall, 1993. 被引量:1
  • 9Gazor S, Grenier Y. Criterion for position of sensors for microphone array[J]. IEEE Transactions on Speech and Audio Processing, 1995,3(4) :294 - 303. 被引量:1
  • 10Rabinkin D V. Optimum Sensor Placement for Microphone Arrays[D] .New Brunswick Rutgers: The State University of New Jersey, 1998. 被引量:1

共引文献9

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部