摘要
针对线圈绕线时因导针与骨架旋转之间的配合误差和设备震动等原因,造成线圈的凸起和跨线等缺陷的问题,需要对线圈进行合格性评判。而人工检测往往效率低、可靠性不足,文章提出了一种基于机器视觉的快速检测算法,研究了线圈检测算法中图像灰度化处理、阈值分割、降噪、中心点提取和标准差计算等方法,并用Halcon软件验证了检测算法的可行性。结果表明:通过计算线圈中相邻漆包线中心距的标准差可以实现线圈合格性的准确评价,为线圈检测提供了一种高效检测方法。
In view of the matching error between the guide wire and the frame rotation and the vibration of equipment,the coil should be qualified for evaluation due to the raised and cross-line defects of the coil,and the manual detection efficiency is low and the reliability is insufficient.A fast detection algorithm based on machine vision is proposed to determine coil eligibility by calculating the standard deviation of center distance between adjacent enameled wires.This paper studies the image gray-scale processing,threshold segmentation,noise reduction,center point extraction and standard deviation calculation in the coil detection algorithm.And the feasibility of detection algorithm is verified by Halcon software.The results shows that accurate evaluation of coil qualification can be achieved by calculating the standard deviation of the center distance between adjacent enameled wires.It provides an efficient detection method for coil detection.
作者
曾寿金
周佳辉
叶建华
ZENG Shou-jin;ZHOU Jia-hui;YE Jian-hua(School of Mechanical Engineering and Automotive,Fujian University of Technology,Fuzhou 350118,China)
出处
《组合机床与自动化加工技术》
北大核心
2020年第12期48-51,共4页
Modular Machine Tool & Automatic Manufacturing Technique
基金
福建省科技计划项目(2018H0005)
福建工程学院科研启动基金(GY-Z19118,GY-Z19014)。