期刊文献+

基于多光谱多尺度类激活映射的弱监督缺陷分割

Weakly Supervised Defect Segmentation Based on Multi-spectral and Multi-scale Class Activation Maps
下载PDF
导出
摘要 光伏电池外观缺陷种类多、大小和形状差异较大,标注成本高,这为缺陷分割任务带来困难。为了提高光伏电池外观缺陷的分割性能,文中提出一种基于多光谱多尺度类激活映射的弱监督深度学习网络模型(MMCAM-Net)。首先,提出了多光谱深度学习网络结构,实现了光谱信息的多通道融合,增强了MMCAM-Net网络的精细化特征提取能力;其次,设计了多尺度网络结构,实现缺陷信息的高级特征和低级特征融合,增强了MMCAM-Net的缺陷全局与局部信息提取能力;最后,使用图像级标签的数据集来训练MMCAM-Net,实现了光伏电池表面缺陷的弱监督分割。实验结果表明,该网络模型的缺陷分割平均IoU提高了15%-20%,取得了较好的效果。 There are many kinds of defects in the surface of solar cells,with large differences in size and shape,and high labeling cost,which brings difficulties to the task of defect segmentation.In order to improve the segmentation performance of solar cell surface defects,this paper proposes a novel weakly supervised deep learning network with multi-spectral multi-scale class activation mapping,called MMCAM-Net.Firstly,a multi-spectral deep learning network structure is proposed,which realizes the multi-channel fusion of spectral information,and enhances the feature extraction capability of the MMCAM-Net.Secondly,a multi-scale network structure is designed to achieve high-level and low-level defect feature fusion and improve MMCAM-Net's defect global and local information extraction capabilities.Finally,the image-level label data set is used to train MMCAM-Net,which realizes weakly supervised segmentation of solar cell surface defects.Experimental results show that the IoU of the network model has increased by 15%-20%,and satisfactory results are gained.
作者 陈海永 黄迪 庞悦 杜太行 CHEN Hai-yong;HUANG Di;PANG Yue;DU Tai-hang(College of Artificial Intelligence and Data Science, Hebei University of Technology, 300131, Tianjin, China;The 18th Research Institute of China Electronics Technology Corporation, 300385, Tianjin, China;Hebei Province Technology Innovation Center of Industrial Manipulator Control and Reliability, 061001, Cangzhou, Hebei, China)
出处 《河北水利电力学院学报》 2020年第4期10-18,共9页 Journal of Hebei University Of Water Resources And Electric Engineering
基金 国家自然科学基金项目(61873315)。
关键词 类激活映射 多尺度 多光谱 缺陷分割 光伏电池 class activation mapping multi-scale multispectral defect detection solar cells
  • 相关文献

参考文献3

二级参考文献31

  • 1Tsai Du-Ming,Wu Shih-Chieh,Li Wei-Chen.Defect detection of solar cells in electroluminescence images using Fourier image reconstruction.Solar Energy Materials and Solar Cells,2012,99:250-262. 被引量:1
  • 2Tsai Du-Ming,Chang Chih-Chieh,Chao Shin-Min.Microcrack inspection in heterogeneously textured solar wafers using anisotropic diffusion.Image and Vision Computing,2010,28(3):491-501. 被引量:1
  • 3Chiou Yih-Chih,Liu Jian-Zong,Liang Yu-Teng.Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques.Sensor Review,2011,31 (2):154-165. 被引量:1
  • 4Fu Zhuang,Zhao Yang-Zheng,Liu Yang,et al.Solar cell crack inspection by image processing//Proceedings of the International Conference on Business of Electronic Product Reliability and Liability.Shanghai,China,2004:77-80. 被引量:1
  • 5Tsai Du-Ming,Luo Jie-Yu.Mean shift-based defect detection in multicrystalline solar wafer surfaces.IEEE Transactions on Industrial Informatics,2011,7(1):125-135. 被引量:1
  • 6Jean Jong-Hann,Chen Chia-Hong,Lin Hsiu-Li.Application of an image processing software tool to crack inspection of crystalline silicon solar cells//Proceedings of the 2011 International Conference on Machine Learning and Cybernetics.Guilin,China,2011:1666-1671. 被引量:1
  • 7Bastari Alessandro,Bruni Andrea,Cristalli Cristina.Classification of silicon solar cells using electroluminescence texture analysis//Proceedings of the 2010 IEEE International Symposium on Industrial Electronics.Bari,Italy,2010:1722-1727. 被引量:1
  • 8Fuyuki Takashi,Kitiyanan Athapol.Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence.Applied Physics A:Materials Science & Processing,2009,96(1):189-196. 被引量:1
  • 9陈敏铭.矩阵重建的算法与实现[硕士学位论文].中国科学院研究生院,北京,2010. 被引量:1
  • 10Wright John,Ganesh Arvind,Rao Shankar,et al.Robust principal component analysis:Exact recovery of corrupted low-rank matrices via convex optimization//Proceedings of the Conference on Neural Information Processing Systems.Vancouver,Canada,2009:2080-2088. 被引量:1

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部