期刊文献+

基于Python的二阶混沌比例投影同步控制实验 被引量:1

Projective Synchronization Control Experiment of Secondorder Chaotic System based on Python
下载PDF
导出
摘要 Duffing混沌和van der Pol混沌为常见的二阶混沌系统,采用Python语言进行建模和仿真,并通过matplotlib库绘制状态变量的二维相图。驱动系统为Duffing混沌系统,响应系统为van der Pol混沌系统,通过驱动系统和响应系统建立比例投影同步误差系统。采用线性滑模面和指数趋近律设计滑模控制器,进行驱动系统和响应系统的比例投影同步控制。仿真结果表明,滑模控制器能够进行二阶混沌的比例投影同步控制,比例投影同步误差渐进收敛到零。 Duffi ng chaos and van der Pol chaos are common secondorder chaotic systems,which are modeled and simulated based on Python,and the two-dimensional phase diagram of state variables is drawn based on matplotlib library.The drive system is Duffi ng chaos and the response system is van der Pol chaos.The proportional projective synchronization error system is established by the drive system and the response system.The sliding mode controller is designed by using linear sliding mode surface and exponential approach law.The proportional projective synchronization control of the drive system and the response system is carried out.The simulation results show that the sliding mode controller can control the second-order chaos in proportional projective synchronization,the proportional projective synchronization error converges to zero gradually.
作者 赵海滨 颜世玉 ZHAO Haibin;YAN Shiyu
出处 《中国教育技术装备》 2020年第10期124-126,131,共4页 China Educational Technology & Equipment
关键词 比例投影同步 混沌系统 仿真实验 PYTHON proportional projective synchronization chaotic system simulation experiment Python
  • 相关文献

参考文献7

  • 1嵩天,黄天羽.Python语言程序设计教学案例新思维[J].计算机教育,2017(12):11-14. 被引量:86
  • 2蔡萍.混沌Van der Pol-Duffing系统的线性状态反馈控制[J].湖南理工学院学报(自然科学版),2014,27(1):16-19. 被引量:1
  • 3张若愚编..Python 科学计算[M].北京:清华大学出版社,2012:621.
  • 4孙克辉..混沌保密通信原理与技术[M].北京:北京/清华大学出版社,2015:272页.
  • 5任涛,,井元伟,,姜囡..混沌同步控制方法及在保密通信中的应用[M].北京:机械工业出版社,2015:[1] 叶图版.
  • 6刘金琨著..滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2015:445.
  • 7张健,张良均..Python编程基础[M].北京:人民邮电出版社,2018.

二级参考文献13

  • 1刘素华,唐驾时.Langford系统Hopf分叉的线性反馈控制[J].物理学报,2007,56(6):3145-3151. 被引量:11
  • 2Yu P, Chen G R. Hop/ bifurcation control using nonlinear feedback with polynomial functions [J]. International Journal of Bifurcation and Chaos, 2004, 14(5): 1683.1704. 被引量:1
  • 3Liu Z R,Chung K W. Hybrid control of bifurcation in continuous nonlinear dynamical systems coupled chaotic systems [J]. International Journal ofBifurcation and Chaos, 2005,15 (12): 3895.3903. 被引量:1
  • 4Matsumoto T, A chaotic attractor from Chua's circuit [J]. IEEE Transactions on Circuits and systems, 1984,31 (12): 1055.1058. 被引量:1
  • 5King G P,Gaito S T, Bistable C I, Unfolding the cusp [J]. Physical Review: A, 1992,46 (6): 3092.3099. 被引量:1
  • 6Denis de Carvalho Braga, Luis Fernando Mello, Marcelo Messias. Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor [J].Mathematical Problems in Engineering, 2009: 149563, 26 pages, doi: 10.1155/2009/149563. 被引量:1
  • 7A.E. Matouk, H.N. Agiza. Bifurcations, chaos and synchronization in AD VP circuit with parallel resistor [J]. J. Math. Anal. Appl, 2008, 341: 259-269. 被引量:1
  • 8Hassard B D, KazarinoffN D, Wan Y. Theory and Applications of Hopf Bifurcation [M]. London: Cambridge Univ., 1981. 被引量:1
  • 9刘素华,唐驾时.四维Qi系统零平衡点的Hopf分岔反控制[J].物理学报,2008,57(10):6162-6168. 被引量:19
  • 10LIANG Cui-Xiang,TANG Jia-Shi,LIUSu-Hua,HAN Feng.Hopf Bifurcation Control of a Hyperchaotic Circuit System[J].Communications in Theoretical Physics,2009,52(9):457-462. 被引量:3

共引文献85

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部