期刊文献+

手机屏幕轻微划痕检测方法 被引量:8

Method for detection of slight scratch of mobile phone screen
下载PDF
导出
摘要 针对手机屏幕等产品光滑表面轻微划痕的自动检测问题,提出一种基于分类网络+Attention U⁃Net的小目标分割与微小缺陷检测方法.论述基于经典的U⁃Net网络进行光滑表面缺陷检测的数据集准备、语义分割网络构建、评估指标、损失函数、正则化方法以及初始化方式,分析应用经典的U⁃Net神经网络对微小缺陷误检测与漏检测的原因;给出在分类网络中加入分割网络以及加入Attention机制对U⁃Net网络进行改进的方案;搭建分类网络+Attention U⁃Net以改善小目标分割与微小缺陷检测效果.结果表明:提出的改进网络方案对手机屏幕轻微划痕等微小缺陷检测的像素准确率达到0.997,能够很好地满足准确检测手机屏幕轻微划痕的实际需求,也能为瓷砖等产品的光滑表面的轻微划痕与裂纹检测提供有益参考. Aiming at automatically detecting the slight scratch of smooth surface of mobile phone screen,a method for small target segmentation and insignificant defects detection based on“Classification net+Attention U⁃Net”is presented.The necessary components of smooth surface defect detection system based on the classic U⁃Net are proposed,including preparation of data set,semantic segmentation network,definition of evaluation standards and loss function,appropriate regularization methods and special initialization method.The reason for failing to detect and false detection of insignificant defects by the constructed classic U⁃Net are analyzed.An improved scheme of adding segmentation network to classification network and adding the Attention mechanism to the classic U⁃Net is presented.A network consists of“Classification network+Attention U⁃Net”is constructed to improve the effects of small target segmentation and insignificant defects detection.The results show that the pixel accuracy rate of defects detection of mobile phone screen arrives 0.997 by the presented improved net.The presented method can meet the actual requirements on detecting the slight scratch defects of the mobile phone screen.It can also provide valuable reference for similar scratch and crack detection of smooth surface of ceramic tiles.
作者 任秉银 李智勇 代勇 REN Bingyin;LI Zhiyong;DAI Yong(School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China)
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2021年第1期29-36,共8页 Journal of Harbin Institute of Technology
关键词 手机屏幕 缺陷检测 轻微划痕 深度学习 语义分割 小目标检测 mobile phone screen defect detection slight scratch deep learning semantic segmentation small target detection
  • 相关文献

参考文献3

  • 1孙文政..基于深度学习和机器视觉的手机屏幕瑕疵检测方法研究[D].山东大学,2019:
  • 2宋威..基于深度卷积神经网络的手机屏幕缺陷检测[D].电子科技大学,2019:
  • 3梁智聪..基于卷积神经网络的工件表面缺陷检测系统[D].浙江大学,2018:

同被引文献64

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部