期刊文献+

基于可分离卷积的轻量级恶意域名检测模型 被引量:6

Lightweight malicious domain name detection model based on separable convolution
下载PDF
导出
摘要 考虑到基于深度学习的恶意域名检测方法计算开销大,难以有效应用于真实网络场景域名检测实际,设计了一种基于可分离卷积的轻量级恶意域名检测算法。该模型使用可分离卷积结构,能够对卷积过程中的每一个输入通道进行深度卷积,然后对所有输出通道进行逐点卷积,在不减少卷积特征提取效果的情况下,有效减少卷积过程的参数量,实现更加快速的卷积过程并不降低模型的准确性。同时,为了减轻模型训练过程中正负样本数量不平衡与样本难易程度不平衡的情况对模型分类准确率的影响,引入了一种聚焦损失函数。所提算法在公开数据集上与3种典型的基于深度神经网络的检测模型进行对比,实验结果表明,算法能够达到与目前最优模型接近的检测准确率,同时能够显著提升在CPU上的模型推理速度。 The application of artificial intelligence in the detection of malicious domain names needs to consider both accuracy and calculation speed,which can make it closer to the actual application.Based on the above considerations,a lightweight malicious domain name detection model based on separable convolution was proposed.The model uses a separable convolution structure.It first applies depthwise convolution on every input channel,and then performs pointwise convolution on all output channels.This can effectively reduce the parameters of convolution process without impacting the effectiveness of convolution feature extraction,and realize faster convolution process while keeping high accuracy.To improve the detection accuracy considering the imbalance of the number and difficulty of positive and negative samples,a focal loss function was introduced in the training process of the model.The proposed algorithm was compared with three typical deep-learning-based detection models on a public data set.Experimental results denote that the proposed algorithm achieves detection accuracy close to the state-of-the-art model,and can significantly improve model inference speed on CPU.
作者 杨路辉 白惠文 刘光杰 戴跃伟 YANG Luhui;BAI Huiwen;LIU Guangjie;DAI Yuewei(School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China;School of Electronic&Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《网络与信息安全学报》 2020年第6期112-120,共9页 Chinese Journal of Network and Information Security
基金 国家自然科学基金(U1836104)。
关键词 可分离卷积 域名生成算法 深度学习 网络安全 separable convolution domain generation algorithm deep learning cyber security
  • 相关文献

同被引文献39

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部