期刊文献+

Optimal portfolio for a defined-contribution pension plan under a constant elasticity of variance model with exponential utility

原文传递
导出
摘要 Based on the Lie symmetry method,we derive the explicit optimal invest strategy for an investor who seeks to maximize the expected exponential(CARA)utility of the terminal wealth in a defined-contribution pension plan under a constant elasticity of variance model.We examine the point symmetries of the Hamilton-Jacobi-Bellman(HJB)equation associated with the portfolio optimization problem.The symmetries compatible with the terminal condition enable us to transform the(2+1)-dimensional HJB equation into a(1+1)-dimensional nonlinear equation which is linearized by its infinite-parameter Lie group of point transformations.Finally,the ansatz technique based on variables separation is applied to solve the linear equation and the optimal strategy is obtained.The algorithmic procedure of the Lie symmetry analysis method adopted here is quite general compared with conjectures used in the literature.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2020年第5期1001-1009,共9页 中国高等学校学术文摘·数学(英文)
基金 supported in part by the 13th Five-Year National Key Research and Development Program of China(Grant No.2016YFCO401407) the National Natural Science Foundation of China(Grant No.72071076) the Beijing NaturalScience Foundation(Grant No.Z200001) the Fundamental Research Funds of the Central Universities(Grant Nos.2019MS050,2020MS043).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部