期刊文献+

轨迹数据预处理方法综述 被引量:2

The Review of Trajectory Data Pretreatment Methods
下载PDF
导出
摘要 随着大数据技术的发展和移动终端设备的普及,大量轨迹数据得以被采集并存储到互联网上。现今较易获得的轨迹数据使其越来越受到研究者的关注,由于这些原始的轨迹数据受到采样频率、采样精度以及法律法规的影响,而通常不能直接应用到各类挖掘算法中,因此通常需要先进行预处理。该文对轨迹数据的预处理进行了综述。首先,介绍了轨迹数据的概念和用途;其次,总结了轨迹数据的常见特征;再次,归纳了常用的轨迹数据预处理方式;最后,论述了轨迹数据处理面临的挑战并对未来研究方法进行了展望。 With the development of big data technology and the popularization of mobile terminal devices,a large amount of trajectory data can be collected and uploaded to the internet.In recent years,more and more scholars pay attention to the trajectory data easy to be obtained.These original trajectory data affected by sampling frequency,sampling accuracy and laws and regulations,can not be directly applied to various mining algorithms,so,pretreatment is usually needed first.This paper reviews trajectory data pretreatment.Firstly,the concept and application of trajectory data are introduced.Secondly,the common characteristics of trajectory data are summarized.Thirdly,the common track data pretreatment methods are summarized.Finally,the challenges of trajectory data pretreatment are discussed and the future research methods are prospected.
作者 蔡郑 贾利娟 孙扬清 CAI Zheng;JIA Li-juan;SUN Yang-qing(Nanjing Vocational University of Industry Technology,Nanjing 210046,China)
出处 《电脑知识与技术》 2020年第31期9-12,共4页 Computer Knowledge and Technology
基金 南京工业职业技术学院科研基金项目(YK17-12-03)。
关键词 轨迹数据 预处理 滤波 geohash 停留点 trajectory data pretreatment filter geohash stopping point
  • 相关文献

参考文献16

二级参考文献60

  • 1王冲,曾庆军.自适应滤波算法在AUV组合导航中的方法[J].中南大学学报(自然科学版),2013,44(S2):155-159. 被引量:8
  • 2金江华.一种新型车牌:中国,zl2007201524828[P].2008. 被引量:1
  • 3Vieweg S, Hughes A L, Starbird K L. Mieroblogging during two natural hazards events: What twitter may contribute to situa- tional awareness[C]//Proceeding of CHI. 2010:1079-1088. 被引量:1
  • 4Java A, Song X, Finin T. Why we twitter: Understanding mi- croblogging usage and communities[C]//Proceeding of WebK- DD/SN AKDD. 2007. 被引量:1
  • 5Kwak H,Lee C,Park H,et al. What is Twitter,a social network or a news media[C]//Proceeding of WWW. 2010. 被引量:1
  • 6Bernardo A H, Daniel M, Romero, et al. Social networks that matter: Twitter under the mieroscope [ J ]. First Monday, 2009, 14(1). 被引量:1
  • 7Baekstrom L, Sun E, Marlow C. Find me if you can: improving geographical prediction with social and spatial proximity[C]// WWW. 2010:61-70. 被引量:1
  • 8Cheng Z,Caverlee J, Lee K. You are where you tweet: a content- based approach to geo-locating twitter users[M]. ACM CIKM, 2010 : 759-768. 被引量:1
  • 9Lindqvist J, Cranshaw J, Wiese J, et al. I ' m the mayor of my house: examining why people use foursquare-a social-driven lo- cation sharing applieation[M]. ACM CHI, 2011 : 2409-2418. 被引量:1
  • 10Kostakos V, Venkatanathan J, Reynolds B. Who's Your Best Friend-Targeted Privacy Attacks In Location-sharing Social Networks[C]// Proceedings of UbiComp' 11. Beijing, China: ACM Press,September 2011:177-186. 被引量:1

共引文献475

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部