期刊文献+

基于机器学习的软件定义光网络入侵检测策略 被引量:7

Machine Learning based Intrusion Detection Strategy for SDON
下载PDF
导出
摘要 软件定义光网络(SDON)中,控制平面可能遭遇入侵威胁从而对网络的稳定可靠服务供给造成影响。文章针对SDON集中控制平面安全问题提出了一种基于机器学习的入侵检测策略,采用孤立森林算法来检测点异常,采用指数权重移动平均(EWMA)算法来检测序列异常。理论分析和仿真实验结果表明,所提的基于机器学习的SDON检测技术能够实现90%点异常检测准确率和85%序列异常检测准确率。 In the Software Defined Optical Network(SDON),control plane may encounter various intrusion threat,which may affect the stable and reliable service provisioning in the network.Aiming at control plane security problems in SDON,machine learning based intrusion detection strategy is proposed,which utilizes Isolation Forest algorithm to detect point anomalies and Exponentially Weighted Moving Average(EWMA)algorithm to detect sequence anomalies.Theoretical analysis and simulation experimental results show that the proposed SDON detection technology based on machine learning can achieve 90%accuracy of point anomaly detection and 85%accuracy of sequence anomaly detection.
作者 朱嘉豪 徐凯 王炎豪 陆煜斌 宣涵 沈建华 ZHU Jia-hao;XU Kai;WANG Yan-hao;LU Yu-bin;XUAN Han;SHEN Jian-hua(School of Communications&Information Engineering,NUPT,Nanjing 210003,China)
出处 《光通信研究》 北大核心 2020年第6期33-36,共4页 Study on Optical Communications
关键词 软件定义光网络 控制平面 异常检测 机器学习 SDON control plane abnormal detection machine learning
  • 相关文献

同被引文献74

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部