摘要
以提高圆形太阳电池阵的展开过程稳定性和固有频率为优化目标,以UltraFlex太阳电池阵为模型,采用有限元软件SAMCEF对其进行结构优化。以承重梁材料、斜梁开口高度、斜梁位置、梁截面高度及厚度5种结构参数为优化变量,进行了多种工况的展开动力学仿真和模态计算。经分析发现,结构展开后期太阳毯与支撑梁拉扯会导致支撑梁剪切应力激增;梁材料、斜梁位置与支撑梁截面高度对太阳电池阵的展开过程稳定性影响较大;当梁材料为碳纤维,斜梁位置为1100 mm,梁截面高度为20 mm时,展开过程稳定性最好;斜梁位置和承重梁截面厚度对结构固有频率影响较大;当斜梁位置为900 mm或1100 mm、承重梁截面厚度从3 mm增至3.5 mm时,系统固有频率涨幅最大,由此带来的质量增加可以接受。
For the optimization target of improving the deployment process stability and natural frequency of circular solar array,the UltraFlex solar array configuration is employed and the finite element software SAMCEF is utilized for structural optimization.The influence of different structural parameters,including the material of the supporting beam,the opening height of the sloped beam,the position of the sloped beam,the height and thickness of the supporting beam,on the deployment process stability and modal of the system are studied.The results show that,in the late stage of the deployment,the pulling of the solar blanket and the supporting beam will cause the shear stress of the support beam to increase sharply;the beam material,the position of the sloped beam and the cross-section height of the supporting beam have a greater impact on the deployment process stability of the solar array;when the material is carbon fiber,the sloped beam position is 1100 mm,and the cross-section height is 20 mm,the solar array obtains the best deployment process stability;the position of the sloped beam and the thickness of the supporting beam have a greater impact on the natural frequency of the structure;when the sloped beam position is 900 mm or 1100 mm,and the thickness of the supporting beam increases from 3 mm to 3.5 mm,the solar array obtains the best increase of the natural frequency,which can balance the influence of the increase of structure mass.
作者
吴志培
刘志超
宋逸博
荣吉利
辛鹏飞
WU Zhi-pei;LIU Zhi-chao;SONG Yi-bo;RONG Ji-li;XIN Peng-fei(School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;China Academy of Launch Vehicle Technology,Beijing 100076,China;Science and Technology on Space Physics Laboratory,Beijing 100076,China;Beijing Key Laboratoryof Intelligent Space Robotic System Technology and Applications,Beijing Institute of Spacecraft System Engineering,Beijing 100094,China)
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2020年第11期1378-1384,共7页
Journal of Astronautics
基金
民用航天“十三五”技术预先研究项目(D020205)。