期刊文献+

基于高次频谱对称Holder系数的雷达信号分选方法 被引量:5

Radar Signal Sorting Method Based on the Symmetric Holder Coefficients of High-order Spectrum
下载PDF
导出
摘要 针对复杂战场电磁环境下,基于全脉冲参数的传统分选算法准确率下降这一问题,本文提出一种提取信号高次频谱对称Holder系数作为脉内特征参数的信号分选方法。该方法首先利用对称Holder系数法提取信号高次频谱的脉内特征,而后将提取到的脉内特征参数与稳定的脉间参数组成新的特征向量,最后使用K-means算法对信号进行分选。作为一种脉内特征,信号的高次频谱对称Holder系数相比于一次频谱相像系数具有更大的寻优空间。将该特征加入信号特征向量可使新的特征向量具有更强的可分性。对四种雷达信号的仿真实验结果表明,在特征向量中加入该特征,能够有效提高信号分选的正确率。 Aiming at the problem that the accuracy rate of the traditional sorting algorithms based on full pulse parameters is reduced in the complex electromagnetic environment of battlefields,this paper proposes a signal sorting method,which extracts the symmetrical Holder coefficients of the higher-order spectrums of the signals as the in-pulse feature parameters.This method first uses the symmetric Holder coefficient method to extract the intra-pulse features of the higher-order spectrums of the signals,and then combines the extracted intra-pulse feature parameters and the stable inter-pulse parameters into a new feature vector,and finally uses the K-means algorithm to sort the signals.As an intra-pulse feature,the symmetric Holder coefficients of high-order spectrum have a larger space for optimization than the resemblance coefficients of 1st-order spectrum.Adding this feature to the signal feature vector can make the new feature vector more separable.The simulation experiment results of four kinds of radar signals show that adding this feature to the feature vector can effectively improve the accuracy of signal sorting.
作者 苑军见 陈世文 刘智鑫 陈蒙 Yuan Junjian;Chen Shiwen;Liu Zhixin;Chen Meng(School of Data and Target Engineering,PLA Strategic Support Force Information Engineering University,Zhengzhou,Henan 450001,China)
出处 《信号处理》 CSCD 北大核心 2020年第10期1775-1783,共9页 Journal of Signal Processing
关键词 信号分选 高次频谱 对称Holder系数 K-MEANS聚类 脉冲描述字 signal sorting high-order spectrum symmetric holder coefficient K-means clustering pulse description word
  • 相关文献

参考文献18

二级参考文献177

共引文献83

同被引文献42

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部