期刊文献+

超长纳米线状MnOOH电极材料的制备及其电化学性能

Preparation and Electrochemical Performance of Ultra-long MnOOH Nanowires
原文传递
导出
摘要 以KMnO4和醋酸铵为原料,无需额外的模板剂,采用简单水热法制备超长纳米线状MnOOH,利用X射线衍射仪、扫描电子显微镜、透射电子显微镜、热重分析,循环伏安法、恒流充放电法和电化学阻抗法对合成样品进行表征。结果表明:MnOOH纳米线的长度在10μm以上,直径约为20 nm,在电流密度为1 A/g时,比电容为285 F/g;在电流密度为10 A/g时,4 000次充放电循环后电容保持率达96.2%;MnOOH纳米线材料可以形成出色的电子传输通道,表现出较为优异的超电容性能,作为超级电容器的电极材料具有广阔的应用前景。 Ultra-long MnOOH nanowire was prepared by a simple hydrothermal process using KMnO4 and ammonium acetate without additional template agents. MnOOH sample was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, amperometry, constant current charge/discharge characterization and electrochemical impedance spectroscopy. The results show that the length of MnOOH nanowires is more than 10 μm, and the diameter is approximately 20 nm. The specific capacitance is 285 F/g at current density of 1 A/g in 1.0 mol/L Na2SO4 electrolyte, and it can still keep a good cycling stability after 4 000 cycles. The post-capacitance retention rate reaches 96.2%. The MnOOH nanowire as an electrode material has an excellent electron transmission channel, exhibiting a superior ultracapacitor performance, which can have broad application prospects as an electrode material for supercapacitors.
作者 成晓玲 黄露茵 胡凯 陈豪森 CHENG Xiaoling;HUANG Luyin;HU Kai;CHEN Haosen(School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2020年第11期1859-1864,共6页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金面上项目(51678160)。
关键词 碱式氧化锰 水热法 电化学性能 超级电容器 manganese oxyhydroxide hydrothermal method electrochemical performance supercapacitor
  • 相关文献

参考文献3

二级参考文献64

  • 1Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1:2193-2203. 被引量:1
  • 2Kraytsberg A, Ein-Eli Y (2011) Review on Li-air batteries-- opportunities, limitations and perspective. J Power Sour 196:886-893. 被引量:1
  • 3Padbury R, Zhang XW (201 1) Lithium-oxygen batteries-limiting factors that affect performance. J Power Sour 196:44364444. 被引量:1
  • 4Park CK, Park SB, Lee SY et al (2010) Electrochemical perfor- mances of lithium-air cell with carbon materials. Bull Korean Chem Soc 31:3221-3224. 被引量:1
  • 5Xiao J, Hu J, Wang DY et al (2011) Investigation of the re- chargeability of Li-O2 batteries in non-aqueous electrolyte. J Power Sour 196:5674-5678. 被引量:1
  • 6Peng Z, Freunberger SA, Hardwick LJ et al (2011) Oxygen reactions in a non-aqueous Li+ electrolyte. Angew Chem Int Ed 50:6351-6355. 被引量:1
  • 7Lu YC, Xu Z, Gasteiger HA et al (2010) Platinum-gold nanopar- ticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc 132:12170-12171. 被引量:1
  • 8Fangyi C, Jun C (2012) Metal-air batteries: from oxygen reduc- tion electrochemistry to cathode catalysts. Chem Soc Rev 41:2172-2192. 被引量:1
  • 9Sun B, Wang B, Su DW et al (2012) Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon 50:727-733. 被引量:1
  • 10Cao Y, Wei ZK, He Jet al (2012) -MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance. Energy Environ Sci 5:9765-9768. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部