期刊文献+

基于1D-CNN的Φ-OTDR地埋光纤振动事件分类方法 被引量:7

Buried fiber vibration event classification method based on 1D-CNN forΦ-OTDR
原文传递
导出
摘要 Φ-OTDR分布式光纤传感系统在安全监测领域应用广泛,其关键的任务是振动事件的类型识别。传统的模式识别方法的识别率和鲁棒性都不够理想,而基于深度学习的方法能自发从数据提取特征并完成分类,准确率和适应性都更好。相比二维卷积神经网络(2D-CNN),一维卷积神经网络(1D-CNN)的网络大小和训练速度均更有优势,本文以LeNet-5为基准网络,实现了基于1D-CNN的Φ-OTDR地埋光纤检测振动事件分类,并通过实验法对比分析了不同结构超参数对识别效果的影响,选取最优参数构建LeNet-1D-V网络。实验结果显示,本文构建的LeNet-1D-V在5种类别的地埋光纤振动事件分类中,将分类准确率从92.3%提升至94.6%,为多事件类型的地埋光纤事件分类研究提供了参考依据。 Φ-OTDR distributed optical fiber sensing system is widely used in the field of safety monitoring,and its key task is to identify the type of vibration event.The recognition rate and robustness of traditional pattern recognition methods are not sufficient enough.Deep learning can extract features and realize classification spontaneously,with better accuracy and adaptability.Compared with the two-dimensional convolutional neural network(2 D-CNN),the one-dimensional convolutional neural network(1 D-CNN)has smaller net size and faster training speed.Set LeNet-5 as the baseline network,this paper attained to classify the vibration events forΦ-OTDR with buried sensing fiber which based on 1 D-CNN.In addition,the optimal parameters to construct a LeNet-1 D-V network was selected by comparing the influence of different structural hyperparameters on recognition accuracy.The experiment results show that the LeNet-1 D-V constructed in this paper improves the classification accuracy rate from 92.3%to 94.6%in the classification of 5 types of buried fiber vibration events,which provides a foundation for the classification of multiple event types detected by buried fiber.
作者 罗天林 王砾苑 施羿 LUO Tian-lin;WANG Li-yuan;SHI Yi(Shantou University,School of engineering,Guangdong Provincial Key Laboratory of Digital Signal and Image Processing,Shantou 515063,China;Jiangxi College of Applied Technolgy,Ganzhou 341000,China)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2020年第9期955-964,共10页 Journal of Optoelectronics·Laser
基金 国家自然科学青年基金(61801283) 汕头大学科研启动基金(NTF18007)资助项目。
关键词 分布式光纤传感系统 一维卷积神经网络 结构超参数优化 distributed optical fiber sensing system one-dimensional convolutional neural network structural hyperparameter optimization
  • 相关文献

参考文献1

二级参考文献27

  • 1冯刚,段其昌,张从力.一种多门限过零率前端检测理论的参数自优化方法研究[J].仪器仪表学报,2004,25(z3):525-527. 被引量:6
  • 2李洪兴 汪培庄.模糊数学[M].北京:国防工业出版社,1985.. 被引量:3
  • 3Li X, Sun Q, Wo J, et al.. Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection[J]. Journal of Lightwave Technology, 2012, 30(8): 1113-1120. 被引量:1
  • 4Shi Y, Feng H, An Y, et al.. Research on wavelet analysis for pipeline pre-warning system based on phase-sensitive optical time domain reflectometry[C]. Advanced Intelligent Mechatronics (AIM), International Conference on IEEE, 2014:1177-1182. 被引量:1
  • 5Lee M, Taylor H F. Distributed fiber optic intrusion detection system with improved sensitivity[C]. Optical Fiber Sensors, 2006. 被引量:1
  • 6Taylor H F, Lee C E. Apparatus and method for fiber optic intrusion sensing: U. S. Patent, 5, 194, 847[P]. 1993-3-16. 被引量:1
  • 7Martins H F, Martin-Lopez S, Corredera P, et al.. Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry[J]. Opt Lett, 2013, 38(6): 872-874. 被引量:1
  • 8Martins H F, Martin-Lopez S, Corredera P, et el.. Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves[J]. Journal of Lightwave Technology, 2013, 31(23): 3631-3637. 被引量:1
  • 9Zhong X, Zhang C, Li L, et al.. Influences of laser source on phase-sensitivity optical time-domain reflectometer-based distributed intrusion sensor[J]. Appl Opt, 2014, 53(21): 4645-4650. 被引量:1
  • 10Rao Y J, Luo J, Ran Z L, et al.. Long-distance fiber-optic -OTDR intrusion sensing system[C]. 20th International Conference on Optical Fibre Sensors. International Society for Optics and Photonics, 2009: 750310. 被引量:1

共引文献23

同被引文献149

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部