摘要
球形机器人工作过程中受到的低速冲击能够对其内部装置与运行精度产生重大威胁。针对球形机器人的玻璃纤维增强聚合物(GFRP)薄壁球壳结构可能受到的大变形动载作用,进行GFRP球壳的低速冲击损伤研究,分为试验和仿真两个方面,通过不同冲击速度的低速冲击试验与准静态压缩试验得出GFRP球壳的动力学响应及剩余承载力,并且基于Hashin准则建立球壳的复合结构渐进损伤仿真模型,阐明其在不同冲击速度下的应力分布、结构变形模式和能量耗散机制。研究结果再现了球形机器人球壳在严苛环境下发生变形与侵彻贯穿的情况,得到了球壳发生侵彻贯穿的临界冲击速度范围,对高性能球形机器人的研制及其精准控制的实现有着极为重要的意义。
The low velocity impact on a spherical robot during its work can pose a major threat to its internal devices and operational accuracy.Aiming at the possible large deformation and dynamic loading beared by the glass fiber reinforced polymer(GFRP)thin-walled spherical shell structure of the spherical robot,the low velocity impact damage of the GFRP spherical shell was studied by experiments and numerical simulations.The dynamic response and residual bearing capacity of the shell were obtained by low velocity impact tests and quasi-static compression tests with different impact velocities.A progressive damage simulation model of the composite spherical shell for demonstrating the expounded stress distribution,structural deformation mode and energy dissipation mechanism under impact was established based on the Hashin criterion.The results reproduce the deformation and penetration processes of the spherical shell of the spherical robot in harsh environment,and its critical impact velocity range is presented.It is benefitial to the development of high-performance spherical robots and the realization of accurate control.
作者
马龙
孙汉旭
兰晓娟
王志强
MA Long;SUN Hanxu;LAN Xiaojuan;WANG Zhiqiang(School of Automation,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2020年第22期198-206,共9页
Journal of Vibration and Shock
基金
国家自然科学基金(51175048)
中央高校基本科研业务费专项资金(2018RC57)。