期刊文献+

基于EEMD-ELM的大坝变形预测模型 被引量:8

Prediction of Dam Deformation Using EEMD-ELM Model
下载PDF
导出
摘要 建立合理可信的大坝变形监控模型对科学有效地分析大坝变形监测数据和准确可靠地评估大坝工作运行状况意义重大。通过EEMD算法分解大坝变形量,得到代表不同特征尺度的本征模函数(IMF)分量,针对不同IMF分量选择不同影响因素,将各IMF分量作为极限学习机(ELM)的训练样本对大坝变形分量进行分析、拟合、预测,最后累加各IMF分量的预测结果得到大坝变形预测值。以某碾压混凝土重力坝为例,利用EEMD-ELM模型对大坝变形量进行预测,同时与BPNN模型和ELM模型的预测结果进行对比分析,其中EEMD-ELM模型的平均相对误差为0.566,较BPNN模型、ELM模型分别降低54%和14.8%,表明EEMD-ELM模型预测精度更高,具备一定的应用价值。 A reasonable and credible dam deformation monitoring model is of great significance for scientific and effective analysis of dam deformation monitoring data and accurate and reliable evaluation of dam’s working and operating conditions.The EEMD(Ensemble Empirical Mode Decomposition)model is adopted to decompose the dam deformation monitoring data,and the IMF(Intrinsic Mode Function)components representing different feature scales are obtained.With different influence factors for different components,the IMF components are used as the training samples of ELM(Extreme Learning Machine)to analyze,fit and predict the monitoring data.The predicted values of dam deformation are obtained by adding the values of each component.With a RCC(Roller Compacted Concrete)gravity dam as an example,the prediction result of EEMD-ELM model is compared with those of BPNN(Back Propagation Neural Network)model and ELM model.The comparison result reveal that the prediction accuracy of EEMD-ELM model is higher than that of BPNN model and ELM model,with the mean relative error merely 0.566,54%and 14.8%lower than those of BPNN and ELM,respectively.
作者 鄢涛 陈波 曹恩华 刘永涛 YAN Tao;CHEN Bo;CAO En-hua;LIU Yong-tao(State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing210098, China;National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China;College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)
出处 《长江科学院院报》 CSCD 北大核心 2020年第11期70-73,80,共5页 Journal of Changjiang River Scientific Research Institute
基金 国家重点研发计划项目(2018YFC0407104) 国家自然科学基金青年项目(51609074) 江苏省基础研究计划青年项目(BK20160872)。
  • 相关文献

参考文献6

二级参考文献57

共引文献101

同被引文献91

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部