摘要
【目的】获取水稻田的低空遥感图像并分析得到杂草分布图,为田间杂草精准施药提供参考。【方法】使用支持向量机(SVM)、K最近邻算法(KNN)和AdaBoost 3种机器学习算法,对经过颜色特征提取和主成分分析(PCA)降维后的无人机拍摄的水稻田杂草可见光图像进行分类比较;引入一种无需提取特征和降维、可自动获取图像特征的卷积神经网络(CNN),对水稻田杂草图像进行分类以提升分类精度。【结果】SVM、KNN和AdaBoost对测试集的测试运行时间分别为0.5004、2.2092和0.4111 s,分类精度分别达到89.75%、85.58%和90.25%,CNN对图像的分类精度达到92.41%,高于上述3种机器学习算法的分类精度。机器学习算法及CNN均能有效识别水稻和杂草,获取杂草的分布信息,生成水稻田间的杂草分布图。【结论】CNN对水稻田杂草的分类精度最高,生成的水稻田杂草分布图效果最好。
【Objective】To obtain and analyze the low altitude remote sensing image of rice field,acquire the weed distribution map,and provide a reference for the precious pesticide application of weeds in the field.【Method】Three machine learning algorithms including support vector machine(SVM),K-nearest neighbor(KNN)and AdaBoost were used to classify and compare the weed visible light images in rice field captured by UAV after color feature extraction and principal component analysis(PCA)dimensionality reduction.A convolutional neural network(CNN)which can automatically obtain the image features without feature extraction and dimensionality reduction was introduced to classify the weed images and improve the classification accuracy.【Result】The run time of test set based on SVM,KNN and AdaBoost were 0.5004,2.2092 and 0.4111 s,and the classification accuracies were 89.75%,85.58%and 90.25%respectively;The classification accuracy of image based on CNN was 92.41%,which was higher than those of three machine learning algorithms.All machine learning algorithms and CNN could effectively recognize rice and weed,acquire weed distribution information,and generate distribution map of weed in rice field.【Conclusion】The classification accuracy of weed in rice field based on CNN is the highest,and the weed distribution map generated by CNN is the best.
作者
朱圣
邓继忠
张亚莉
杨畅
严智威
谢尧庆
ZHU Sheng;DENG Jizhong;ZHANG Yali;YANG Chang;YAN Zhiwei;XIE Yaoqing(National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology/College of Engineering,South China Agricultural University,Guangzhou 510642,China)
出处
《华南农业大学学报》
CAS
CSCD
北大核心
2020年第6期67-74,共8页
Journal of South China Agricultural University
基金
广东省现代农业产业共性关键技术研发创新团队项目(2019KJ133)
广东省重点领域研发计划(2019B020221001)
广东省科技计划(2018A050506073)。
关键词
无人机遥感
稻田杂草
机器学习算法
卷积神经网络
精准施药
UAV remote sensing
paddy weed
machine learning algorithm
convolutional neural network
precious pesticide application