期刊文献+

基于深度学习与特征融合的人脸识别算法 被引量:9

Face Recognition Algorithm Based on Deep Learning and Feature Fusion
下载PDF
导出
摘要 近年来,随着各行业对安全认证和监控系统的需求激增,如何准确识别身份信息已经成为了学术界的热点研究方向。生物学信息识别技术由于个体特征的唯一性在识别的准确度上有着得天独厚的优势而迅速崛起。基于深度学习和特征融合理论提出一种人脸识别算法。首先,分析了人脸识别的行业发展现状;其次,阐述了深度神经网络的原理并分析了各种模型的特征;再次,提出一种人脸特征融合算法;最后,在实验中,以不同肤色、人种、性别的人脸图像为实验对象,验证了所提出算法在多种条件下的有效性。 In recent years,with the increasing demand for security authentication and monitoring system in various industries,how to accurately identify the identity information has become a hot research direction in academia.Due to the uniqueness of individual characteristics,biological information recognition technology has a unique advantage in the accuracy of recognition and is rising rapidly.This paper proposes a face recognition algorithm based on deep learning and feature fusion theory.Firstly,the development status of face recognition industry is analyzed.Secondly,the principle of deep neural network is expounded and the characteristics of various models are analyzed.Thirdly,a face feature fusion algorithm is proposed.Finally,face images of different skin color,race and gender are taken as experimental objects to verify the effectiveness of the proposed algorithm under various conditions.
作者 郭天伟 齐金山 杨海东 王超 GUO Tianwei;QI Jinshan;YANG Haidong;WANG Chao(Information Statistics Center, Huai’an Second People’s Hospital, Huai’an 223001, China;School of Computer Science and Technology, Huaiyin Teachers College, Huai’an 223001, China;School of Information Science, Henan Polytechnic University, Jiaozuo 454000, China)
出处 《微型电脑应用》 2020年第11期5-8,22,共5页 Microcomputer Applications
基金 国家自然科学基金项目(61501215) 2019市科技局支持项目(HAB201934) 省人才办第五期333(BRA2017245)。
关键词 深度学习 卷积神经网络 特征融合 人脸识别 deep learning convolutional neural network feature fusion face recognition
  • 相关文献

参考文献8

二级参考文献43

  • 1宋刚,艾海舟,徐光祐.纹理约束下的人脸特征点跟踪[J].软件学报,2004,15(11):1607-1615. 被引量:15
  • 2周大可,杨新,彭宁嵩.改进的线性判别分析算法及其在人脸识别中的应用[J].上海交通大学学报,2005,39(4):527-530. 被引量:12
  • 3庄哲民,张阿妞,李芬兰.基于优化的LDA算法人脸识别研究[J].电子与信息学报,2007,29(9):2047-2049. 被引量:25
  • 4Bartlett MS,Movellan JR,Sejnowski TJ.Face recognition by independent component analysisIEEE Transactions on Neural Networks,2002. 被引量:1
  • 5Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis,1999(03). 被引量:1
  • 6SIROVICH L, KIRBY M. Low-dimensional procedure for the char- acterization of human faces[ J]. Journal of the Optical Society of A- merica A, 1987, 4(3) : 519 -524. 被引量:1
  • 7CHELLAPPA R, WILSON C L, SIROHEY S. Human and machine recognition of faces: a survey [ J]. Proceedings of the IEEE, 1995, 83(5) : 705 -740. 被引量:1
  • 8BELHUMERUR P N, HESPANttA J P, KRIEGMAN D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1997, 19(7}: 711-720. 被引量:1
  • 9TAIGMAN Y, YANG M, RANZATO M A, et al. Deepface: closing the gap to human-level performance in face verification[ C]// Pro-ceedings of the 2014 IEEE Conference on Computer Vision and Pat- tern Recognition. Piscataway: IEEE, 2014: 1701- 1708. 被引量:1
  • 10MAENPAA T, PIET1KAINEN M. Texture analysis with local binary patterns( I]. Handbook of Pattern Recognition and Computer Vi- sion, 2005, 3:197-216. 被引量:1

共引文献152

同被引文献69

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部