期刊文献+

HSV空间的RetinexNet低照度图像增强算法 被引量:13

RetinexNet Low Illumination Image Enhancement Algorithm in HSV Space
原文传递
导出
摘要 针对RetinexNet低照度图像增强算法中出现的颜色失真、边缘模糊等问题,提出了一种改进的RetinexNet算法。首先,利用HSV(Hue,Saturation,Value)颜色空间模型中各通道相对独立的特性,增强亮度分量;然后,利用相关系数使饱和度分量随亮度分量的变化自适应调整,避免图像色感发生变化;最后,针对增强图像的边缘模糊问题,采用Laplace算法对反射率图像进行锐化处理,增强图像的细节表达能力。实验结果表明,本算法可以有效增强图像的细节,保持图像的整体色彩和原始图像一致,提高图像的视觉效果。 Aiming at the problem of color distortion and edge blur in RetinexNet low illumination image enhancement algorithm,we propose an improved RetinexNet algorithm.First,using the relatively independent characteristics of each channel in the HSV(Hue,Saturation,Value)color space model to enhance the brightness component.Then,the correlation coefficient is used to adaptively adjust the saturation component with the change of the brightness component to avoid changes in image color perception.Finally,aiming at the edge blur problem of the enhanced image,Laplace algorithm is adopted to sharpen the reflectivity image to enhance the ability of detail expression of the image.Experimental results show that the proposed algorithm could effectively enhance the details of the image,keep the overall color of the image consistent with the original image,and improve the visual effect of the image.
作者 张红颖 赵晋东 Zhang Hongying;Zhao Jindong(College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第20期286-293,共8页 Laser & Optoelectronics Progress
基金 国家重点研发计划(2018YFB1601200) 国家自然科学基金联合基金(U1533203) 中央高校基本科研业务费专项(3122018C004)
关键词 RetinexNet算法 图像增强 HSV颜色空间 相关系数 RetinexNet algorithm image enhancement HSV(Hue Saturation Value)color space correlation coefficient
  • 相关文献

参考文献4

二级参考文献30

共引文献146

同被引文献116

引证文献13

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部