期刊文献+

基于响应图置信度的并行相关滤波跟踪算法 被引量:2

Parallel Correlation Filter Tracking Algorithm Based on Response Map Confidence
原文传递
导出
摘要 相比传统目标跟踪算法,基于相关滤波的目标跟踪算法跟踪精度更高、实时性更好,但当目标被遮挡或超出视野时,难以提取目标特征、正确定位检测窗口,容易导致目标跟踪失败或漂移。因此,提出了一种基于置信度的并行相关滤波跟踪算法。首先,使用一种新的置信度评价方法判断目标是否被遮挡或存在异常情况。其次,在置信度的基础上,用组合权重融合两种不同的跟踪器,构建并行相关滤波跟踪算法,以提高算法的跟踪精度和鲁棒性。最后,为了防止模型污染,对两种滤波器模型采取自适应权重更新策略。在OTB-2013和OTB-2015数据集上进行实验,结果表明,相比传统算法,本算法在跟踪精度和成功率上均有显著提升。 Compared with traditional target tracking algorithms,the target tracking algorithm based on correlation filter has great advantages in tracking accuracy and real-time performance.However,when the target is blocked or out of view,it is difficult to extract target features and correctly locate the detection window,which may easily lead to target tracking failure or drift.Therefore,in this paper,a parallel correlation filter tracking algorithm based on confidence is proposed.First,the paper proposes a new confidence evaluation method to determine whether the target is blocked or out of view.Second,on the basis of confidence,two different trackers are fused with the combination weight of confidence to construct a parallel correlation filter tracking algorithm in order to improve the tracking accuracy and robustness.Finally,in order to prevent model pollution,an adaptive weight update strategy is adopted for the two filter models.Experiments on OTB-2013 and OTB-2015 datasets show that compared with traditional algorithms,this algorithm has significantly improved tracking accuracy and success rate.
作者 宋奇奇 李晓丽 左伟 顾立鹏 Song Qiqi;Li Xiaoli;Zuo Wei;Gu Lipeng(School of Information Science and Technology,Donghua University,Shanghai 201620,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第20期157-166,共10页 Laser & Optoelectronics Progress
基金 上海市自然科学基金(16ZR1446700,17ZR1400100) 上海市浦江人才计划(18Pj1400100)。
关键词 图像处理 相关滤波 目标跟踪 置信度 自适应学习率 并行跟踪 image processing correlation filter target tracking confidence adaptive learning rate parallel tracking
  • 相关文献

参考文献5

二级参考文献95

  • 1许莉,王敏,温月.基于Lab颜色空间的运动目标检测[J].华中科技大学学报(自然科学版),2013,41(S1):219-222. 被引量:15
  • 2史泽林,王俊卿,黄莎白.复杂场景下的变形目标跟踪[J].光电工程,2005,32(1):31-35. 被引量:4
  • 3王震宇,张可黛,吴毅,卢汉清.基于SVM和AdaBoost的红外目标跟踪[J].中国图象图形学报,2007,12(11):2052-2057. 被引量:11
  • 4Adam A,Rivlin E,Shimshoni I.Robust fragments-basedtracking using theintegral histogram[C]// Proc of the 19th IEEE Computer Vision and Pattern Recognition.LosAlamitos,CA:IEEE Computer Society,2006;798-805. 被引量:1
  • 5Comaniciu D,Ramesh V,Meer P.Kernel-based objecttracking[J],IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5):564-575. 被引量:1
  • 6Liang D,Huang Q,Jiang S,et al.Mean-shift blob trackingwith adaptive feature selection and scale adaptation[C]//Proc of the 11th IEEE Int Conf on Computer Vision.LosAlamitos,CA:IEEE Computer Society,2007:369-372. 被引量:1
  • 7Ning J,Zhang L,Zhang D,et al.Scale and orientationadaptive mean shift tracking[J].Computer Vision,IET,2012,6(1);52-61. 被引量:1
  • 8Yu T,Wu Y.Differential tracking based on spatial-appearance model (SAM)[C]// Proc of the 19th IEEE Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2006:720-727. 被引量:1
  • 9Han B,Davis L.On-line density-based appearance modeling for object tracking[C]// Proc of the 10th IEEE Int Conf onComputer Vision.Los Alamitos,CA:IEEE Computer Society,2005:1492-1499. 被引量:1
  • 10Wang H,Suter D,Schindler K,et al.Adaptive objecttracking based on an effective appearance filter[J].IEEETrans on Pattern Analysis and Machine Intelligence, 2007,29(9):1661-1667. 被引量:1

共引文献227

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部