期刊文献+

基于Owen值的特征选择算法

A Feature Selection Algorithm Based on Owen Value
下载PDF
导出
摘要 在雷达地面目标识别中,采用合适的特征选择算法有助于在复杂的特征空间中挑选出对不同类型目标具有较强区分能力的特征。结合信息论和合作博弈理论,提出一种基于Owen值的特征选择算法,旨在选择出与类别相关度高、特征与特征之间冗余性低、依赖性强的最优特征子集,达到在雷达目标识别中提高识别率的目的。利用雷达实测数据验证其性能,结果表明,所选特征子集的平均识别准确率优于两种经典的Filter式特征选择算法,且该算法具有良好的噪声/杂波稳健性。 In radar ground target recognition,suitable feature selection algorithm contributes to selecting the features with high discrimination in the complex characteristic space for different types of target.On the basis of information theory and cooperative game theory,a novel feature selection algorithm is proposed based on the Owen value.The proposed feature selection algorithm can select the optimal feature subset,in which the features are of high relevance with its class,and have low redundancy and strong dependence with each other,thus can greatly improve the recognition performance of radar target.Experiments conducted on the real data show that:1) The average recognition rate of the proposed method is better than that using the two classical Filter algorithms;and 2) The proposed feature selection algorithm is robust against noise/clutter.
作者 朱红茹 刘峥 王晶晶 马晓瑛 ZHU Hongru;LIU Zheng;WANG Jingjing;MA Xiaoying(National Laboratory of Radar Signal Processing,Xidian University,Xi'an 710071,China)
出处 《电光与控制》 CSCD 北大核心 2020年第11期6-9,58,共5页 Electronics Optics & Control
基金 国家自然科学基金(61301282)。
关键词 雷达目标识别 特征选择 合作博弈 Owen值 radar target recognition feature selection cooperative game Owen value
  • 相关文献

参考文献6

二级参考文献28

  • 1Park J S, Shazzad K M, Kim D S. Toward modeling lightweight intrusion detection system through correlation based hybrid feature selection[ C ]//Proceedings of the CISC, Heidelberg: Springer- Verlag, 2005:279 - 289. 被引量:1
  • 2Jaln A K, Zongker D. Feature selection: Evaluation, application, and small sample performance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (2) : 153 - 158. 被引量:1
  • 3Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers [ J ]. Pattern Recognition, 2000, 33 (1):25-41. 被引量:1
  • 4Holland J. Adaptation in natural and artificial systems[M]. Ann Arbor: University of Michigan Press, 1975. 被引量:1
  • 5Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans System, Man and Cybernetics, 1994, 24(4) : 656 - 667. 被引量:1
  • 6Kirkpatrick S, Gellatt C D, Vechi M R. Optimization by simulated annealing[J]. Science, 1983, 220:671 - 680. 被引量:1
  • 7KOHAVI R, JOHN G. Wrappers for feature subset selection [ J ]. Artificial Intelligence, 1997,97:273 - 324. 被引量:1
  • 8ALMULLIM H, DIETTERICH T. Learning with many irrelevant features [ C ]//Proceedings of Ninth National Conference on Artificial Intelligence, New Orleans . AAAI Press, 1991:547 -552. 被引量:1
  • 9LIU H, MOTODA H. Feature selection for knowledge discovery and data mining [ M ]. Boston:Kluwer Academic Publishes, 1998:62 - 68. 被引量:1
  • 10KIRA K, RENDELL L. The feature selection problem : Traditional methods and a new algorithm[ C ]//Proceedings of the Ninth National Conference on Artificial InteUigenc. New Orleans : AAAI Press, 1992 : 129 - 134. 被引量:1

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部