期刊文献+

基于模型补偿的高速列车状态反馈预测控制 被引量:3

State feedback predictive control of high-speed train based on model compensation
下载PDF
导出
摘要 高速列车运行系统本质上是高度非线性和不确定性的系统,为了弥补建模过程中被忽略或者简化的非线性和不确定性,提高高速列车运行过程的控制精度,提出一种基于模型补偿的高速列车状态反馈预测控制方法。在建模和控制上,分别采用子空间辨识法和状态反馈预测控制法,在此基础上建立BP神经网络在线补偿器,利用高速列车运行过程的状态变量和实际速度作为补偿器的输入,参考轨迹与实际速度之间的差值构成性能指标函数进行在线训练,输出补偿控制力作用于控制系统完成在线补偿,实现高速列车目标速度曲线高精度跟踪控制。仿真实验结果表明,该方法能够提高控制系统的控制精度。 The high-speed train operation system is essentially a highly nonlinear and uncertain system.In order to compensate for the non-linearity and uncertainty that are ignored or simplified during the modeling process,and to improve the control accuracy of the high-speed train operation process,method on model compensation of high-speed train state feedback predictive control is proposed.In modeling and control,the subspace identification method and the state feedback predictive control method are used respectively.On this basis,an BP neural network online compensator is established,and the state variables and actual speed of the high-speed train operation process are used as the input of the compensator.The difference between the trajectory and the actual speed constitutes a performance index function for on-line training,and the output compensation control force acts on the control system to complete the on-line compensation to achieve high-precision tracking control of the target speed curve of the high-speed train.Simulation experiment results show that this method can improve the control accuracy of the control system.
作者 杨辉 童英赫 付雅婷 李中奇 YANG Hui;TONG Yinghe;FU Yating;LI Zhongqi(School of Electrical and Electronic Engineering,East China Jiaotong University,Nanchang 330013,China;Key Laboratory of Advanced Control and Optimization of Jiangxi Province,Nanchang 330013,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2020年第10期2460-2468,共9页 Journal of Railway Science and Engineering
基金 国家自然科学基金资助项目(61673172,61733005,61803155) 江西省青年科学基金重点资助项目(20192ACBL21005)。
关键词 高速列车 子空间辨识法 预测控制 神经网络 在线补偿 high-speed train subspace identification predictive control neural networks online compensation
  • 相关文献

参考文献11

二级参考文献92

共引文献75

同被引文献23

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部