摘要
针对实际数据集中的每一类数据都潜在或显著地包含独有的数据风格信息,提出一种挖掘数据风格信息的双知识表达分类方法.在训练阶段,利用K近邻(KNN)算法构建社交网络以表达数据点之间的组织架构,并利用社交网络属性挖掘数据点及每一类数据整体风格信息.在分类阶段,用双知识表达约束所提出方法的分类行为,即赋予测试样本标签时既要使该样本物理上与所建分类模型最相似,也要使该样本风格上与分类模型最相似.与其他对比分类方法相比,所提出方法在不包含或包含不显著风格的数据集上至少能够取得竞争性的分类性能,在包含明显风格的数据集上能够取得优越性的分类性能.
Since the distinguished style information of data may latently or obviously present in each data class in a given real-world dataset,a double knowledge representations based classification method(DKR-CM)from the perspective of social networks is proposed.In the training stage,a social network corresponding to all data samples in a dataset is easily built using the on-hand KNN method.In addition,style information of each data sample and each data class are respectively exploited in the social network.In the prediction stage,the proposed double knowledge representations(DKR)is utilized to improve the classification hebaviors of the DKR-SCM.In other words,each data sample is classified into the data class which it approaches to as far as possible from the perspectives of both physical features and style information of data.Experimental results demonstrate that the DKR-CM is at least comparative to the compared classification methods on the datasets with no or inapparent style information and outperforms them on the datasets with obvious style information.
作者
顾苏杭
王士同
GU Su-hang;WANG Shi-tong(School of Digital Media,Jiangnan University,Wuxi 214122,China;School of Information Engineering and Technology,Changzhou Institute of Industry Technology,Changzhou 213164,China)
出处
《控制与决策》
EI
CSCD
北大核心
2020年第11期2653-2664,共12页
Control and Decision
基金
国家自然科学基金项目(61572236,61300151)
常州工业职业技术学院博士基金项目(BSJJ13101010)
常州工业职业技术学院新一代信息技术团队项目(YB201813101005)
常州市科技计划项目(CJ20190016)。
关键词
分类算法
双知识表达
社交网络
数据风格信息
classification algorithms
double knowledge representation
social networks
style information of data