期刊文献+

小样本条件下的数字通信信号调制识别研究 被引量:1

Modulation Recognition of Digital Communication Signals under Small Sample Conditions
下载PDF
导出
摘要 在现今的通信中,接收信号样本不完全会造成数据的缺失,给数字信号的识别带来困难。因此小样本条件下的数字通信信号调制识别研究具有重大意义。生成式对抗网络(GAN)作为一种拟合生成数据的热门方法备受关注。在原始GAN的基础上将深度卷积对抗网络用于条件生成式对抗网络,实现小样本数据的扩充和识别。实验仿真结果表明,所提出的方法可以有效地生成数据并进行分类识别。此外与相关算法的比较,验证了算法的可行性。 In today’s communication,incomplete received signal samples will result in missing data and bring difficulties to the identification of digital signals.Therefore,the research on the modulation recognition of digital communication signals under the condition of small samples is of great significance.As a popular method of fitting generated data,GAN(generative adversarial network)has attracted much attention.On the basis of the original GAN,the deep convolutional GAN(DCGAN)is used in the conditional GAN(cGAN)to realize the expansion and recognition of small sample data.The simulation results indicate that the proposed method could effectively generate data for classification and recognition.In addition,the comparison with related algorithms verifies the feasibility of the proposed algorithm.
作者 马小博 张邦宁 郭道省 曹林 MA Xiao-bo;ZHANG Bang-ning;GUO Dao-xing;CAO Lin(Army Engineering University of PLA,Nanjing Jiangsu 210007,China)
机构地区 陆军工程大学
出处 《通信技术》 2020年第11期2641-2646,共6页 Communications Technology
基金 江苏省自然科学基金(No.BK20191328)。
关键词 调制识别 小样本 生成式对抗网络 深度卷积生成对抗网络 条件生成对抗网络 modulation recognition small sample GAN(generative adversarial network) DCGAN(deep convolutional GAN) conditional GAN
  • 相关文献

参考文献6

二级参考文献17

  • 1李广久.博弈论基础教程[M].北京:化学工业出版社,2005.1-9. 被引量:6
  • 2AKYILDIZ I, LI W Y, VURAN M, et al. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey[J]. Computer Networks Journal, 2006, 9(2): 2127-2159. 被引量:1
  • 3BRUCE F. Cognitive Radio Technology [M]. New York: Academic Press, 2007. 被引量:1
  • 4李琳,曾志民,冯春燕等.认知无线电网络中的非合作频谱分配算法研究[EB/OL].http://www.paper.edu.cn/downloadpaper.php?serial_number=20081-36.2008-12-1. 被引量:2
  • 5ZHAO Q, TONG L, SWAMI A, et al. Decentralized cognitive MAC for opportunistic spectrum access in ad-hoc networks: a POMDP framework [J]. IEEE Journal on Selected Areas in Communications, 2007, 25(3):589-600. 被引量:1
  • 6HUANG J, BERRY R, HONIG M. Auction-based spectrum sharing[J]. Mobil Networks and Applications, 2006, l 1 (3): 405-408. 被引量:1
  • 7NIYATO D, HOSSAIN E. Competitive spectrum sharing in cognitive radio networks: a dynamic game approach[J]. IEEE Transaction on Wireless Communications, 2008, 7(7): 2651-2660. 被引量:1
  • 8ALIREZA A, SASWATI S, CHANDRAMANI S, et al. A coalitional game framework for cooperative secondary spectrum access[A]. 2008 46th Annual Allerton Conference on Communication, Control, and Computing [C]. Urbana-Champaign, IL, USA, 2008. 1154-1160. 被引量:1
  • 9NIYATO D, HOSSAIN E. Competitive pricing for spectrum sharing in cognitive radio networks: dynamic game, inefficiency of nash equilibrium and collision[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 192-202. 被引量:1
  • 10GOLDSMITH A J, CHUA S G. Variable rate variable power MQAM for trading channels[J]. IEEE Journal on Selected Areas in Communications, 1997, 45(10): 1218-1230. 被引量:1

共引文献2356

同被引文献13

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部