摘要
利用TCAD半导体器件仿真软件,详细分析了低能(1.8 keV)质子辐照剂量对低轨道卫星用高效插指背结背接触(IBC)单晶硅太阳电池转换效率的影响。通过转换效率及其退化特点的对比,得到质子辐照剂量与复合中心密度、陷阱密度之间的对应关系。在不同的质子辐照剂量情况下,深入分析了前表面场(FSF)结构和前表面浮空发射区结构(FFE)对太阳电池短路电流密度、开路电压及转换效率的影响,为质子辐照条件下太阳电池前表面结构提供了设计依据。仿真结果表明:当质子辐照剂量小于1×109 cm-2时,随着质子辐照剂量的增大,太阳电池转换效率几乎不变。当质子辐照剂量一定时,存在最优的FSF和FFE的掺杂浓度,使得太阳电池转换效率最高。在质子辐照剂量为0 cm-2和1×1010 cm-2时,FFE结构对应的峰值转换效率略低于FSF结构的情况。在质子辐照剂量为1×1011 cm-2时,FFE结构对IBC太阳电池转换效率的改善效果明显优于FSF结构的情况。
The effect of the low energy(1.8 keV)proton radiation dose on the conversion efficiency of mono-crystalline silicon solar cells was analyzed in detail by TCAD semiconductor device simulation software.The relationship between the proton radiation dose and the recombination center density and trap density were given by comparison of conversion efficiency and degradation characteristics.In the case of different proton radiation doses,the effects of front surface field(FSF)structure and front surface floating emitter(FFE)structure on short-circuit current density,open circuit voltage and conversion efficiency of solar cells were analyzed in detail,providing design basis for the front surface structure of solar cells under proton radiation.The simulation results show that the conversion efficiency of the solar cell is almost unchanged with the increase of the proton irradiation dose when the proton irradiation dose is less than 1×109 cm-2.When the proton irradiation dose is constant,there is the optimal doping concentration of FSF and FFE,which makes the solar cell conversion efficiency highest.When the proton irradiation doses are 0 cm-2 and 1×1010 cm-2,the peak conversion efficiency of the FFE structure is slightly lower than that of the FSF structure.When the proton irradiation dose is 1×1011 cm-2,the improvement effect of the FFE structure on the conversion efficiency of IBC solar cells is significantly better than that of the FSF structure.
作者
葛笑寒
张磊
GE Xiaohan;ZHANG Lei(Institute of Intelligent Manufacturing, Sanmenxia Polytechnic, Sanmenxia 472000, China;College of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, China;Shenyang Aircraft D R Institute, Shenyang 100035, China)
出处
《人工晶体学报》
EI
CAS
北大核心
2020年第10期1883-1888,共6页
Journal of Synthetic Crystals
基金
三门峡市科技攻关计划(2019010114)。
关键词
太阳电池
质子辐照
转换效率
前表面场
浮空发射区
优化
solar cell
proton irradiation
conversion efficiency
front surface field
floating emitter
optimization