期刊文献+

基于随机森林的支持向量机某隧道混凝土抗冻性预测研究 被引量:4

Prediction of Frost Resistance of Tunnel Concrete Based on Support Vector Machine with Random Forest
下载PDF
导出
摘要 将基于随机森林结合支持向量机(RF-SVM)算法引入混凝土抗冻性研究,首先从配合比因素选取n个混凝土抗冻性影响因素,以相对动弹性模量作为混凝土抗冻性评价指标,基于原始样本利用随机森林特征选择对影响因素进行重要性评价和变量筛选,选出最优影响因素集合,作为SVM模型的训练样本,建立降维后的RF-SVM混凝土抗冻性预测模型,输出预测结果,并将其与未进行影响因素筛选的支持向量机和人工神经网络模型结果对比分析,得出RF-SVM预测结果的均方根误差最小,拟合优度最接近1,说明RF-SVM预测结果精度最高、效果最好。 In this paper,the random forest combined with support vector machine(RF-SVM)algorithm is introduced into the research of concrete frost resistance.Firstly,n concrete frost resistance factors are selected from the mix proportion factors,and the relative dynamic elastic modulus is taken as the evaluation index of concrete frost resistance.Based on the original samples,the importance evaluation and variable selection of influencing factors are carried out by using random forest feature selection,and the optimal influence factor set is selected,as the training sample of SVM model,this paper establishes the dimension reduced RF-SVM concrete frost resistance prediction model which outputs the prediction results,and compares it with the results of support vector machine(SVM)and artificial neural network(ANN)models without influencing factors screening.The results show that the root mean square error of RF-SVM prediction results is the minimum,and the goodness of fit is the closest to 1,which indicates that the RF-SVM prediction results have the highest accuracy and efficiency.The fruit is the best.
作者 张陆山 袁福银 胡毅 李铁军 吴贤国 杨赛 ZHANG Lushan;YUAN Fuyin;HU Yi;LI Tiejun;WU Xianguo;YANG Sai(No.6 Engineering Co.,Ltd.of FHEC of CCCC,Tianjin 300451,China;CCCC Road and Bridge Construction Co,Ltd.,Beijing 100027,China;CCCC Second Harbour Engineering Co,Ld.,Wuhan,Hubei 430040,China;China Communications Construction Co,Ld,Bejing 100088,China;Schoo of Ciril Engineering&Mechanics,Huazhong University of Science and Technology,Wuhan,Hubei 430074,China)
出处 《施工技术》 CAS 2020年第17期95-99,共5页 Construction Technology
基金 国家重点研发项目(2016YFC0800208) 国家自然科学基金(51378235 71571078 51308240)。
关键词 混凝土 抗冻性 随机森林 支持向量机 评价 concrete frost resistance random forest support vector machine evaluation
  • 相关文献

参考文献13

二级参考文献128

共引文献135

同被引文献55

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部