期刊文献+

容积卡尔曼滤波器的Bouc-Wen模型在线参数识别 被引量:4

On-line parameter identification of Bouc-Wen model with cubature Kalman filter
下载PDF
导出
摘要 非线性滞回模型具有强烈的非线性特征,瞬时输入与加载历史路径影响模型参数的在线识别精度。以非线性Bouc-Wen模型为例,采用容积卡尔曼滤波器与隐性卡尔曼滤波器分别识别模型参数,对比分析两种滤波器的识别精度和计算效率。结果表明,容积卡尔曼滤波器识别Bouc-Wen模型参数k、γ、n的相对误差分别比隐性卡尔曼滤波器降低了0.73%、1.95%和2.10%,计算时间相比隐性卡尔曼滤波器减少了0.95 s。在模型参数的识别精度和计算效率上容积卡尔曼滤波器优于隐性卡尔曼滤波器,适用于非线性模型的在线参数识别。 This paper is based on the insight that nonlinear hysteretic model has strong nonlinear characteristics,and transient input and loading history path influence the on-line identification accuracy of model parameters.The study involves identifying the model parameters by taking the nonlinear Bouc-Wen model as an example and using the cubature Kalman filter and the unscented Kalman filter;and comparing and analyzing the recognition accuracy and computational efficiency of the two filters.The results show that the cubature Kalman filter identifies the parameters k、γand n of the Bouc-Wen model,with lower relative errors of 0.73%,1.95%and 2.10%and uses a 0.95 less calculation time than the unscented Kalman filter.The cubature Kalman filter superior to the unscented Kalman filter in the accuracy and computational efficiency of model parameters identification works better for the on-line parameter identification of nonlinear models.
作者 王涛 李勐 孟丽岩 Wang Tao;Li Meng;Meng Liyan(School of Architecture & Engineering, Heilongjiang University of Science & Technology, Harbin 150022, China)
出处 《黑龙江科技大学学报》 CAS 2020年第5期551-555,共5页 Journal of Heilongjiang University of Science And Technology
基金 国家自然科学基金项目(51978213)。
关键词 抗震结构 容积卡尔曼滤波器 隐性卡尔曼滤波器 Bouc-Wen seismic structure cubature Kalman filter unscented Kalman filter Bouc-Wen
  • 相关文献

参考文献8

二级参考文献35

  • 1侴乔力,卢军,马春青.一种改进的太阳能吸附式空气取水器[J].太阳能学报,2005,26(5):728-731. 被引量:12
  • 2邱法维.结构抗震实验方法进展[J].土木工程学报,2004,37(10):19-27. 被引量:70
  • 3郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51. 被引量:60
  • 4王进廷,金峰,张楚汉.结构抗震试验方法的发展[J].地震工程与工程振动,2005,25(4):37-43. 被引量:36
  • 5Yang W J, Nakano Y. Substructure online test by using real-time hysteresis modeling with a neural network [ J]. Advances in Experimental Struc- tural Engineering, 2004 ;267 - 274. 被引量:1
  • 6Yang Y S, Tsai K C, Elnashai A S, et al. An online optimization method for bridge dynamic hybrid simulations [ J]. Simulation Modelling Prac- tice and Theory, 2012, 28:42 -54. 被引量:1
  • 7Julier S, Uhmann J, Whyte H. A new method for the nonlinear transformation of means and covariances in fihers and estimators [ J ]. IEEE Trans. Automat. Control, 2000, 45:477-482. 被引量:1
  • 8Wang T, Wu B. Model updating for hybrid testing with unscented Kalman filter [ C]. The 7th International Workshop on Advanced Smart Materi- als and Smart Structures Technology ANCRiSST2012, July 27 -28, 2012, Bangalore, India. 被引量:1
  • 9Mandela R, Kuppuraj V, Rengaswmy R, et al. Constrained unscented recursive estimator for nonlinear dynamic systems [ J]. Journal of Process Control, 2012, 22:718-728. 被引量:1
  • 10Zongbo Xie,Jiuchao Feng.Real-time nonlinear structural system identification via iterated unscented Kalman filter[J].Mechanical Systems and Signal Processing.2011 被引量:1

共引文献35

同被引文献29

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部