摘要
针对GNSS-RTK技术应用于形变监测时数据结果不佳导致无法进行有效监测的问题,提出了一种基于形变数据的数据预处理和异常状态识别方法。首先采用改进拉依达准则进行粗差剔除,然后采用小波去噪处理,最后根据形变数据异常模型构建休哈特均值控制图。结果表明,改进拉依达准则可以实现对实测形变数据的实时粗差剔除,根据最优小波系数设置的小波去噪可以有效提高形变数据精度,休哈特均值控制图结合改进拉依达准则可以实现对形变数据的无误警有效监控。
In view of the problem that the data result of GNSS-RTK technology is not good when it is applied to deformation monitoring,which leads to the failure of effective monitoring,a data preprocessing and abnormal state recognition method based on deformation data is proposed. Firstly,the improved laida criterion is used to eliminate the gross errors,then wavelet denoising is used,and finally the Shewhart mean control chart is constructed according to the deformation data anomaly model. The results show that the real-time gross errors of the measured deformation data can be eliminated by the improved laida criterion,the wavelet denoising based on the optimal wavelet coefficient can effectively improve the accuracy of the deformation data,and the Shewhart mean control chart combined with the improved laida criterion can effectively monitor the deformation data without false alarm.
作者
刘新华
尚俊娜
施浒立
LIU Xinhua;SHANG Junna;SHI Hull(College of Telecommunication Engineering,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China;National Astronomical Observatories of Chinese Academy of Sciences,Bei/ing 100012,China)
出处
《传感技术学报》
CAS
CSCD
北大核心
2020年第8期1190-1196,共7页
Chinese Journal of Sensors and Actuators
基金
国家自然科学基金青年基金项目(61701481)
中老北斗精密形变监测合作研究及示范项目(SBZ2019080054)
江苏省政策引导类计划(国际科技合作)——“一带一路”创新合作项目(BZ2019006)。