期刊文献+

分布式电动汽车状态与参数无迹卡尔曼滤波估计 被引量:13

State and Parameters Estimation for Distributed Drive Electric Vehicle Based on Unscented Kalman Filter
原文传递
导出
摘要 为提高分布式电动汽车的控制性能,提出一种更加综合、全面的车辆状态及参数估计方法。针对车辆在行驶过程中某些动力学状态及参数难以实时量测的问题,以分布式电驱动汽车为研究对象,探讨基于无迹卡尔曼滤波的车辆状态估计及参数识别方法。建立7自由度时变参数车辆模型;以车辆易于测量的纵向加速度、侧向加速度、横摆角速度和轮速为观测变量,通过状态扩维,将车辆相关参数引入到车辆状态矢量中,采用无迹卡尔曼滤波算法设计一种车辆状态和参数的联合观测器,以便同时估计和辨识车辆纵向速度、侧向速度、轮胎侧向力、车辆质量、转动惯量、质心位置及其高度;在Simulink/Carsim平台上进行鱼钩角输入、滑行和加速工况的仿真验证,结果表明,该联合观测器能够有效的估计和辨识出上述相关车辆状态和参数,收敛效果较好。 In order to improve the control performance of distributed drive electric vehicle(EV)a more comprehensive vehicle state and parameter estimation method is proposed.For the problem that it is difficult to measure the vehicle states and parameters in real time,the distributed EV is considered as the object,and a method of vehicle states and parameters estimation based on unscented Kalman filter(UKF)is discussed.Firstly,the 7-DOF time-varying parameter vehicle model is established;secondly,taking the longitudinal acceleration,lateral acceleration,yaw angular velocity and wheel speed which are easy to be measured as the measured variables,a combined observer of vehicle states and system parameters is designed using the UKF algorithm to estimate longitudinal velocity,lateral velocity,lateral tire forces,vehicle mass,center position and inertia moment by extending the dimension of state variables.Finally,the combined observer is simulated and analyzed on Simulink/Carsim platform.The results show that the observer can estimate vehicle state and system parameters effectively,and has a good convergence effect.
作者 宋义彤 舒红宇 陈仙宝 靖长青 郭成 SONG Yitong;SHU Hongyu;CHEN Xianbao;JING Changqing;GUO Cheng(State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing 400044;School of Automotive Engineering,Chongqing University,Chongqing 400044)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2020年第16期204-213,共10页 Journal of Mechanical Engineering
基金 国家自然科学基金(51975069) 重庆市自然科学基金(cstc2018jcyj AX0077) 重庆市研究生科研创新(CYB18059)资助项目。
关键词 无迹卡尔曼滤波 观测器 估计 Simulink/Carsim unscented Kalman filter observer estimation Simulink/Carsim
  • 相关文献

参考文献4

二级参考文献44

  • 1施树明,Henk Lupker,Paul Bremmer,Joost Zuurbier.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程,2005,27(4):426-430. 被引量:29
  • 2M ' sirdi N, Rabhi A, Zbiri N, et al. Vehicle-road interaction modeling for estimation of contact force [ J ]. Vehicle System Dynamics, 2005, 43(1) : 403 -411. 被引量:1
  • 3Satria M, Best M C. Comparison between Kalman filter and robust filter for vehicle handling dynamics state estimation [ C ]. SAE Paper 2002 - 01 - 1185, 2002. 被引量:1
  • 4Ray L R. Nonlinear tire force estimation and road friction identification: simulation and experiment[ J]. Automatica, 1997, 33(10): 1 819-1833. 被引量:1
  • 5Wilkin M A, Crolla D C, Levesley M C, et al. Designed verification of an extended Kalman filter to estimation vehicle tyre force[ C ]. SAE Paper 2006 - 01 - 1285, 2006. 被引量:1
  • 6Wenzel T A, Burnham K J, Blundell M V. Dual extended Kalman filter for vehicle state and parameter estimation [ J ]. Vehicle System Dynamics, 2006, 44(2) : 153 -171. 被引量:1
  • 7Baffet G, Charara A. An observer of tire-road forces and friction for active security vehicle system [ J ]. IEEE/ASME Transactions on Mechatronics, 2007, 12 ( 6 ) : 651 - 661. 被引量:1
  • 8Bolzern P, Cheli F, Falciola G, et al. Estimation of the non-linear suspension tyre eorning forces from experimental road test data[ J ]. Vehicle System Dynamics, 1999, 31 ( 1 ) : 23 - 34. 被引量:1
  • 9Kim J. Identification of lateral tyre force dynamics using an extended Kalman fiher from experimental road test data [ J ]. Control Engineering Practice, 2009, 17 (3) : 357 - 367. 被引量:1
  • 10Best M C. Identifying tyre models directly from vehicle test data using an extended Kalman filter [ J]. Vehicle System Dynamics, 2009, 48(2) : 171 - 187. 被引量:1

共引文献52

同被引文献94

引证文献13

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部