期刊文献+

基于最大熵原理的电子商务混合入侵行为信息智能化检索方法研究 被引量:3

Research on Intelligent Retrieval Method of E-commerce Mixed Intrusion Behavior Information Based on Maximum Entropy Principle
下载PDF
导出
摘要 电子商务混合入侵行为会造成企业经济受到损失,于是为了减少损失需要对其信息进行检索,从而及时有效的检索出入侵信息。文章提出了一种基于最大熵原理的入侵行为信息智能化检索方法,其中使用了两种离散方式将特征转化为离散数值,从而可以除去冗余干扰特征;再使用了3种特征选择方式,除去了噪声干扰特征。最后通过仿真实验得到文章所研究的检索方法具有效率快、精确度高的特点。 The mixed intrusion of e-commerce will cause losses to the enterprise economy,so in order to reduce losses,it is necessary to retrieve its information,so as to retrieve the intrusion information in a timely and effective manner.This paper proposes an intelligent retrieval method for intrusion behavior information based on the principle of maximum entropy.Two discrete methods are used to convert features into discrete values,so that redundant interference features can be removed;Three more feature selection methods are used to remove noise interference features.Finally,through simulation experiments,the retrieval method studied in this paper has the characteristics of fast efficiency and high accuracy.
作者 段立峰 DUAN Li-feng(Shaanxi Polytechnic Institute,Xianyang Shaanxi 712000,China)
出处 《粘接》 CAS 2020年第10期141-144,156,共5页 Adhesion
关键词 最大熵原理 电子商务 混合入侵 检索 principle of maximum entropy e-commerce mixed intrusion retrieval
  • 相关文献

参考文献8

二级参考文献54

  • 1李元兵,房鼎益,吴晓南,陈晓江.基于神经网络的异常入侵检测系统[J].系统工程与电子技术,2005,27(9):1648-1651. 被引量:2
  • 2张卷美.一种新的迭代收敛阶数的证明与推广[J].大学数学,2007,23(6):135-139. 被引量:3
  • 3国家互联网应急中心.2013年我国互联网网络安全态势综述[J/OL].http://www.cert. org.cn. 被引量:1
  • 4ANDERSO J P. Computer Security Threat Monitoring and Surveil-lance [P]. USA: PA 19034,1980.4. 被引量:1
  • 5LI M. An approach to reliably identifying signs ofDDOS flood attacksbased on LRD traffic pattern recognition[Jj. Computers & Security,2004,23(7):549-558. 被引量:1
  • 6DEREK. S, GUAN Q, FU S. An anomaly detection framework forautonomic management of compute cloud systems[C]//ComputerSoftware and Applications Conference Workshops (COMPSACW).Seoul, c2010: 376-381. 被引量:1
  • 7GUAN Q, ZHANG Z M, FU S. Ensemble of Bayesian predictors anddecision trees for proactive failure management in cloud computingsystems[J]. Journal of Communications, 2012,7(1):52-61. 被引量:1
  • 8HUSANBIR S, LIU J G, GUAN Q. AFD: adaptive failure detectionsystem for cloud computing infrastructures[C]//Perrormance Computingand Communications Conference (IPCCC). Austin, TX, c2012: 71-80. 被引量:1
  • 9ZHU Q, TERESA T, XTE Q. Automatic fault diagnosis in cloud infra-slnicture[C]//Cloud Computing Technology and Science(CloudCom).Bristol, c2013: 467-474. 被引量:1
  • 10GUAN Q, FU S. Adaptive anomaly identification by exploring metricsubspace in cloud computing infrastructures[C]//Reliable DistributedSystems (SRDS). Braga, c2013: 205-214. 被引量:1

共引文献86

同被引文献44

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部