摘要
运用二项式系数N=C2n^n标准分解式中素因子指数的特殊性质,得到N的控制式,从而给出了贝特朗假设一般情形的证明。结果表明,通过对组合数分解式的精细分析,可为研究素数分布规律和探讨相关应用问题拓宽空间。
Using the special property of the index of the prime factor in the standard factorization of binomial coefficient N=C2n^n,the control formula of N is obtained.Then,the proof of Bertrand’s hypothesis for general case is given.It is proved that the detailed analysis of the combinatorial number decomposition helps expand the application for the study on the relevant issues of the distribution law of prime numbers.
作者
吴彬
陈刚
WU Bin;CHEN Gang(General Education Department,Nantong Vocational University,Nantong 226007,China)
出处
《南通职业大学学报》
2020年第3期59-61,共3页
Journal of Nantong Vocational University
关键词
组合数
贝特朗假设
一般情形
combination number
Bertrand hypothesis
general case