期刊文献+

融合LDA主题模型和二维卷积的短文本分类 被引量:3

SHORT TEXT CLASSIFICATION COMBINING LDA TOPIC MODEL AND 2D CONVOLUTION
下载PDF
导出
摘要 由于受到短文本文本长度的限制,传统分类模型不能够充分挖掘短文本序列信息,导致短文本分类效果不佳。对此提出两种融合LDA主题模型和二维卷积的短文本分类模型。采用LDA主题模型预训练得到的主题词项分布来弥补短文本缺乏的主题信息,通过预训练词向量来补充短文本通用语义信息。同时将随机初始化词向量、预训练词向量,以及主题词项分布进行拼接,应用二维卷积学习拼接后短文本表示的空间层次结构。实验结果表明,相比于其他短文本分类算法,提出的两种短文本分类模型可以充分挖掘利用短文本特征,其分类准确度明显提升。 Due to the limitation of the length of short text,the traditional classification model can not fully exploit the short text sequence information,resulting in poor short text classification.Therefore,this paper proposes two short text classification models combining LDA topic model and 2D convolution.The topic term distribution obtained by pre-training LDA topic model was used to make up for the lack of topic information of short text,and the short text general semantic information was supplemented by pre-training word vector.We spliced the random initialization word vector,the pre-training word vector and the topic term distribution,and applied the 2D convolution learning to construct the spatial hierarchy of the short text representation.The experimental results show that compared with other short text classification algorithms,two short text classification models can fully exploit the short text features,and the accuracy of short text classification was significantly improved.
作者 康宸 郑山红 李万龙 Kang Chen;Zheng Shanhong;Li Wanlong(Changchun University of Technology,Changchun 130012,Jilin,China)
机构地区 长春工业大学
出处 《计算机应用与软件》 北大核心 2020年第11期127-131,153,共6页 Computer Applications and Software
基金 吉林省自然科学基金项目(20130101060JC)。
关键词 短文本分类 LDA主题模型 二维卷积 Short text classification LDA topic model 2D Convolution
  • 相关文献

参考文献4

二级参考文献77

  • 1张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:98
  • 2张玉芳,彭时名,吕佳.基于文本分类TFIDF方法的改进与应用[J].计算机工程,2006,32(19):76-78. 被引量:120
  • 3Deerwester S C, Dumais S T, Landauer T K, et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 1990. 被引量:1
  • 4Hofmann T. Probabilistic latent semantic indexing//Proceedings of the 22nd Annual International SIGIR Conference. New York: ACM Press, 1999:50-57. 被引量:1
  • 5Blei D, Ng A, Jordan M. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022. 被引量:1
  • 6Griffiths T L, Steyvers M. Finding scientific topics//Proceedings of the National Academy of Sciences, 2004, 101: 5228 5235. 被引量:1
  • 7Steyvers M, Gritfiths T. Probabilistic topic models. Latent Semantic Analysis= A Road to Meaning. Laurence Erlbaum, 2006. 被引量:1
  • 8Teh Y W, Jordan M I, Beal M J, Blei D M. Hierarchical dirichlet processes. Technical Report 653. UC Berkeley Statistics, 2004. 被引量:1
  • 9Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, B39(1): 1-38. 被引量:1
  • 10Bishop C M. Pattern Recognition and Machine Learning. New York, USA: Springer, 2006. 被引量:1

共引文献282

同被引文献25

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部