期刊文献+

一种基于RBF神经网络实现波束形成的方法 被引量:3

A Method to Realize Beamforming Based on RBF Neural Network
下载PDF
导出
摘要 以最小均方差(LMS)算法的解为基础,提出一种基于径向基函数(RBF)神经网络的波束形成方法。首先方法将一定量、等步长的DOA值通过LMS算法计算出的阵列权值向量作为训练集,而后基于训练集RBF神经网络进行训练,最终在DOA估计后可快速计算出阵列天线中各阵元的权值。上述方法利用RBF神经网络快速逼近非线性函数的特点,替代原有LMS自适应波束形成算法的迭代过程,以期减小计算量。Matlab仿真结果表明,上述方法能够有效减少阵列权值向量计算过程的运算量,提高波束形成的实时性。 A beamforming method based on radial basis function(RBF) neural network is proposed in this paper, which was realized with least mean square(LMS) algorithm. The method used a certain amount valid DOA values as the training set and the array weight vector calculated by the LMS algorithm to train the RBF neural network. The way to calculate the weight of each antenna array element after DOA estimation can be more quickly. It used the characteristic of RBF neural network that can approximate the nonlinear functions fast, and eliminates the iteration process of LMS adaptive beamforming algorithm. The method was simulated through MATLAB, and the result demonstrates the effectiveness of this method, reduces the computational complexity of the beamforming process and improves the real-time capability of beamforming.
作者 周书宇 黄宛宁 李崔春 ZHOU Shu-yu;HUANG Wan-ning;LI Cui-chun(Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China;School of Electronic Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机仿真》 北大核心 2020年第10期159-163,共5页 Computer Simulation
基金 国家自然科学基金青年科学基金项目(61703389)。
关键词 波束形成 径向基函数 神经网络 最小均方算法 Beamforming Radial basis function(RBF) Neural networks Least mean square(LMS)algorithm
  • 相关文献

参考文献4

二级参考文献18

共引文献6

同被引文献32

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部