期刊文献+

基于条件生成对抗网络的多风格素描-照片生成 被引量:1

Multi Style Sketch-Photo Generation Based on Conditional Generation Adversarial Networks
原文传递
导出
摘要 针对普通生成模型生成的图片存在细节缺乏、图片模糊等问题,结合变分自编码器(VAE)强大的特征提取能力,使用条件生成对抗网络(CGAN)生成了高质量照片,结果表明,利用该方法基于CUHK student人脸库生成照片,照片的相似性度提高了0.09,达到了0.77。同时在实际应用中,手绘素描由于画家的不同而风格迥异,在训练素描-照片生成过程中使用同一风格的素描会使得输入图像单一。为避免这一问题,通过使用多种素描样式扩展训练数据集,提高了模型通用性,结果表明,相比于未扩展训练集,基于扩展训练集生成的照片的相似性度提高了0.233,达到了0.603。 The traditional generation model causes image blurring and lack of details.Therefore,in this paper,we propose a conditional generation adversarial network combining with the powerful feature extraction capability of the variational autoencoder to realize high-quality photo generation.In training process of sketch-photo generation,sketches with the same style are used,leading to the monotonous input image.The hand-drawn sketches of various artists have different styles.Therefore,using sketches in multiple styles to extend the training dataset,the universality of the model is improved.The experimental results demonstrate that the similarity of the generated photos using the proposed method improves by 0.09(to 0.77)based on CUHK student data set.In addition,the compared with the unexpanding training set,the similarity of the generating image using our training set also improves by 0.233(to 0.603).
作者 崔小曼 于凤芹 Cui Xiaoman;Yu Fengqin(School of Internet of Things Engineering,Jiangnan University,Wuaci,Jiangsu 214122,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第18期189-195,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61573168) 中央高校基本科研业务费专项资金(JUSRP51733B)。
关键词 图像处理 变分自编码器 条件生成对抗网络 素描 image processing variational auto-encoder conditional gencration adversarial networks sketch
  • 相关文献

参考文献9

二级参考文献97

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2张英武,姬红兵.人脸画像识别研究[J].电子科技,2005,18(3):29-31. 被引量:3
  • 3TANG X O, WANG X G. Face sketch recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1) :50-57. 被引量:1
  • 4LIU Q SH,TANG X O, JIN H L,etal. A nonlinear approach for face sketch synthesis and recognition [C]. IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition, 2005, ( 1 ) : 1005-1010. 被引量:1
  • 5WANG X G, TANG X O. Face photo-sketch syn- thesis and recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (11) : 1955-1967. 被引量:1
  • 6XIAO B, GAO X B, TAO D CH, etal: A new ap- proach for face recognition by sketches in photos[J]. Signal Processing, 2009, 89(8) : 1576-1588. 被引量:1
  • 7GAO X B, WANG N N, TAO D CH, etal: Face sketch-photo synthesis and retrieval using sparse representation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(8) : 1213-1226. 被引量:1
  • 8ZHANG J W, WANG N N, GAO X B, etal: Face sketch photo synthesis based on support vector re- gression [C]. 18th IEEE International Conference on Image Processing, 2011 : 1125-1128. 被引量:1
  • 9LIU W, TANG X O, LIU J Z. Bayesian tensor in- ference for sketch-based facial photo hallucination [J]. International Joint Conference on Artificial Intelligence, 2007 : 2141-2146. 被引量:1
  • 10PURKAITP, CHANDA B, KULKARNI S. A no- vel technique for sketch to photo synthesis [C]. Seventh Indian Conference on Computer Vision,Graphics and Image Processing, 2010: 219 226. 被引量:1

共引文献217

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部