摘要
利用Zn扩散方法制备了倍增层厚度为1.5,1.0,0.8μm的In0.53Ga0.47As/InP雪崩光电二极管(APDs),研究了该器件特性。随着倍增层厚度的增加,器件的贯穿电压和击穿电压均呈现增大趋势。基于Silvaco模拟计算了APD器件的倍增层厚度对电场强度、电流特性、击穿电压与贯穿电压的影响规律,结果表明,随着倍增层厚度的增加,倍增层内电场强度减小,贯穿电压和击穿电压同时增大,与实验结果吻合。进一步研究发现,当倍增层的厚度小于0.8μm时,击穿电压随着倍增层厚度的增加会先减小后增大,贯穿电压则会单调增大。
We investigate the device properties of In0.53Ga0.47As/InP avalanche photodiodes(APDs)with different multiplication layer thicknesses of 1.5,1.0 and 0.8μm by the Zinc diffusion method.The punch-through voltage and the breakdown voltage increase with the increase of the multiplication layer thickness.On the basis of the simulation by the Silvaco software,the influences of the multiplication layer thickness on the electric field,current-voltage characteristics,breakdown voltages and punch-through voltages are studied.As the multiplication layer thickness increases,the electric field intensity decreases,in contrast,both of the punch-through and breakdown voltages increase,which are consistent with the experimental results.A further study shows that when the multiplication layer thickness is smaller than 0.8μm and as the multiplication layer thickness increases,the breakdown voltage first decreases and then increases,while the punch-through voltage monotonically increases.
作者
王航
袁正兵
谭明
顾宇强
吴渊渊
肖清泉
陆书龙
Wang Hang;Yuan Zhengbing;Tan Ming;Gu Yuqiang;Wu Yuanyuan;Xiao Qingquan;Lu Shulong(Institute of Nano-Tech and Nano-Bionics,University of Science and Technology of China,Hefei,Anhui 230026,China;Key Laboratory of Nano-devices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou,Jiangsu 215123,China;College of Big Data and Information Engineering,Guizhou University,Guiyang,Guizhou 550025,China)
出处
《光学学报》
EI
CAS
CSCD
北大核心
2020年第18期10-14,共5页
Acta Optica Sinica
基金
国家重点研发计划(2018YFB2003305)
国家自然科学基金(61534008,61774165,61704186)
江苏省重点研发计划(BE2018005)
中国科学院科技服务网络计划项目(KFJ-STS-ZDTP-086)
纳米所自有资金项目(Y8AAQ11003)。
关键词
探测器
雪崩光电二极管
贯穿电压
击穿电压
分子束外延
ZN扩散
detectors
avalanche photodiode
punch-through voltage
breakdown voltage
molecular beam epitaxy
Zn diffusion