摘要
设r,t,j是正整数,对于n阶哈密顿图G,若对每一个r+tj+i(r+tj+i≤n),G中长为r+i+j的圈恰好有di个,0≤i≤t-1,其中t是di的周期,j是t重复的次数,则称图G为r-(d0,…,dt-1)-泛圈图.本文讨论了r-(3,3,4,3,4,3,3,3)-泛圈图,r-(3,5,5,3)-奇(偶)泛圈图,以及g(0,0,6,…,6)的界.
Let r,t,j be positive integers.A simple graphs G of order n is said to be r-(d0,…,dt-1)-pancyclic if G contains exactly di(0≤i≤t-1)cycles of length r+tj+i satisfying r+tj+i≤n and t is the period of di(0≤i≤t-1),j is the number of trepeats.This thesis mainly discuss r-(3,3,4,3,4,3,3,3)-pancyclic graphs,r-(3,5,5,3)-oddpancyclic(or bipancyclic)graphs and the boundary about g(0,0,6,…,6).
作者
张耀静
ZHANG Yaojing(School of Mathematics and Statisttcs,Minnan Normal University,Zhangzhou,Fujian 363000,China;Institute of Meteorological Big Data-Digital Fujian,Zhangzhou,Fujian 363000,China)
出处
《闽南师范大学学报(自然科学版)》
2020年第3期21-26,共6页
Journal of Minnan Normal University:Natural Science