摘要
研究了一类不同输入率和输出率的时滞SEIR(susceptible exposed infectious recovered)蠕虫病毒传播模型,模型中的潜伏状态节点和感染状态节点具有不同的感染率.首先,计算得到模型的基本再生数和有病毒平衡点;然后,以蠕虫病毒的潜伏期时滞为分岔参数,通过分析相应特征方程根的分布情况,得到模型局部渐近稳定和产生Hopf分岔的充分条件;最后,利用仿真示例验证所得结果的正确性.
A delay SEIR(susceptible exposed infectious recovered)worm propagation model with different input and removal rates is studied,in which the latent state nodes and infected state nodes have different infection rates.Firstly,the basic reproduction number and virus-present equilibrium of the model are calculated.Secondly,taking the latent time delay of the virus as the bifurcation parameter,the sufficient conditions for the locally asymptotical stability and occurrence of Hopf bifurcation of the model are obtained by analyzing the root distribution of the corresponding characteristic equation.Finally,a simulation example is carried out to verify the correctness of the results.
作者
张子振
邹俊宸
门秀萍
ZHANG Zizhen;ZOU Junchen;MEN Xiuping(School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu 233030, China)
出处
《沈阳大学学报(自然科学版)》
CAS
2020年第5期397-401,共5页
Journal of Shenyang University:Natural Science
基金
安徽省高校优秀青年人才支持计划项目(gxyqZD2018044)
安徽省高校自然科学研究重点项目(KJ2020A0002,KJ2020A0014,KJ2020A0016).